PRELIMINARY EXAMINATION: APPLIED MATHEMATICS I

January 7, 2013, 1:00–2:30 p.m.

Work all 3 of the following 3 problems.

1. Let *H* be a real Hilbert space and suppose that *P* is a bounded linear projection on *H*. Let Q = I - P and define M = P(H) and N = Q(H).

(a) Show that there exists C > 0 such that

$$||x - Px|| \le C \inf_{y \in M} ||x - y|| \quad \text{for all } x \in H.$$

(b) Prove that P is an orthogonal projection if and only if

$$\inf_{\substack{y \in N, \|y\|=1\\x \in M}} \|y - x\| = 1$$

[Hint: For the converse, it is enough to show that for any $z \in H$, $z - Pz = Qz \perp M$. Consider y = Qz/||Qz||.]

2. Let X and Y be separable and reflexive Banach spaces and let $T \in B(X, Y)$. Suppose that $y_n \in Y$ and $y_n \stackrel{w}{\rightharpoonup} y$ (y_n converges weakly to y), and that there are $x_n \in X$ such that

$$Tx_n = y_n$$
 for all n .

Moreover, suppose that $||x_n|| \leq M$ for some M > 0.

(a) State the Generalized Heine-Borel Theorem for a separable and reflexive Banach space.

(**b**) Show that for some subsequence $\{x_{n_k}\}_{k=1}^{\infty}$, $Tx_{n_k} \stackrel{w}{\rightharpoonup} y$.

(c) If T is a compact operator, show that the convergence in (b) is strong for the entire subsequence $\{x_{n_k}\}_{k=1}^{\infty}$.

3. Let H be a complex Hilbert space and $T \in C(H, H)$ a compact linear operator.

- (a) Show that T^*T is compact, self-adjoint, and positive (i.e., nonnegative) on H.
- (b) Show that if $w \in N(T^*T)$, then in fact Tw = 0.

(c) Show that there are a pair of orthonormal sets $\{u_n\}_{n=1}^{\infty}$ and $\{v_n\}_{n=1}^{\infty}$ such that for any $x \in H$,

$$Tx = \sum_{n=1}^{\infty} \lambda_n \left\langle x, u_n \right\rangle v_n$$

where $\{\lambda_n^2\}_{n=1}^{\infty}$ are the *positive* eigenvalues of T^*T and $\{u_n\}_{n=1}^{\infty}$ are the corresponding eigenvectors.