PRELIMINARY EXAMINATION: APPLIED MATHEMATICS I

January 7, 2013, 1:00-2:30 p.m.
Work all 3 of the following 3 problems.

1. Let H be a real Hilbert space and suppose that P is a bounded linear projection on H. Let $Q=I-P$ and define $M=P(H)$ and $N=Q(H)$.
(a) Show that there exists $C>0$ such that

$$
\|x-P x\| \leq C \inf _{y \in M}\|x-y\| \quad \text { for all } x \in H
$$

(b) Prove that P is an orthogonal projection if and only if

$$
\inf _{\substack{y \in N,\|y\|=1 \\ x \in M}}\|y-x\|=1
$$

[Hint: For the converse, it is enough to show that for any $z \in H, z-P z=Q z \perp M$. Consider $y=Q z /\|Q z\|$.
2. Let X and Y be separable and reflexive Banach spaces and let $T \in B(X, Y)$. Suppose that $y_{n} \in Y$ and $y_{n} \stackrel{w}{\rightharpoonup} y\left(y_{n}\right.$ converges weakly to $\left.y\right)$, and that there are $x_{n} \in X$ such that

$$
T x_{n}=y_{n} \quad \text { for all } n
$$

Moreover, suppose that $\left\|x_{n}\right\| \leq M$ for some $M>0$.
(a) State the Generalized Heine-Borel Theorem for a separable and reflexive Banach space.
(b) Show that for some subsequence $\left\{x_{n_{k}}\right\}_{k=1}^{\infty}, T x_{n_{k}} \stackrel{w}{\rightharpoonup} y$.
(c) If T is a compact operator, show that the convergence in (b) is strong for the entire subsequence $\left\{x_{n_{k}}\right\}_{k=1}^{\infty}$.
3. Let H be a complex Hilbert space and $T \in C(H, H)$ a compact linear operator.
(a) Show that $T^{*} T$ is compact, self-adjoint, and positive (i.e., nonnegative) on H.
(b) Show that if $w \in N\left(T^{*} T\right)$, then in fact $T w=0$.
(c) Show that there are a pair of orthonormal sets $\left\{u_{n}\right\}_{n=1}^{\infty}$ and $\left\{v_{n}\right\}_{n=1}^{\infty}$ such that for any $x \in H$,

$$
T x=\sum_{n=1}^{\infty} \lambda_{n}\left\langle x, u_{n}\right\rangle v_{n}
$$

where $\left\{\lambda_{n}^{2}\right\}_{n=1}^{\infty}$ are the positive eigenvalues of $T^{*} T$ and $\left\{u_{n}\right\}_{n=1}^{\infty}$ are the corresponding eigenvectors.

