The University of Texas at Austin
 Department of Mathematics

The Preliminary Examination in Probability
 Part I

Jan 10, 2013

Problem 1 (35pts). Let $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ be a uniformly integrable sequence of nonnegative random variables, and let $M_{n}=\max \left(X_{1}, \ldots, X_{n}\right)$, for $n \in \mathbb{N}$. Show that

$$
\lim _{n} \frac{1}{n} \mathbb{E}\left[M_{n}\right]=0
$$

(Hint: For $c \geq 0$, express $M_{n} \mathbf{1}_{\left\{M_{n}>c\right\}}$ using $X_{k} \mathbf{1}_{\left\{X_{k}>c\right\}}, k=1, \ldots, n$.)

Problem 2 (30pts). Consider the following two statements about the random variable X :
(a) X is discrete, i.e., there exists a countable set $C \subseteq \mathbb{R}$ such that $\mathbb{P}[X \in C]=1$.
(b) The characteristic function φ_{X} of X is periodic, i.e., there exists $T>0$ such that $\varphi_{X}(t+T)=$ $\varphi_{X}(t)$, for all $t \in \mathbb{R}$.
Show that $(b) \Rightarrow(a)$. Is it true that $(a) \Rightarrow(b)$?

Problem 3 (35pts). Let $X_{n}=\sum_{k=1}^{n} \xi_{k}, n \in \mathbb{N}, X_{0}=0$, be a simple random walk, i.e., $\left\{\xi_{n}\right\}_{n \in \mathbb{N}}$ are iid with $\mathbb{P}\left[\xi_{1}=1\right]=1-\mathbb{P}\left[\xi_{1}=-1\right]=p \in(0,1)$. Furthermore, let $g: \mathbb{Z} \rightarrow \mathbb{R}$ be a function such that $\left\{g\left(X_{n}\right)\right\}_{n \in \mathbb{N}_{0}}$ is a submartingale.

For which $p \in(0,1)$ does it necessarily follow that g is convex, i.e., that $g(k+1)-2 g(k)+g(k-1) \geq 0$, for all $k \in \mathbb{Z}$.

