ALGREBRA PRELIMINARY EXAM: PART I

Problem 1

Fix an $n \times n$ matrix A with entries in an algebraically closed field K. Let V be the space of $n \times n$ matrices over K that commute with A. Observe that V is a vector space over K. Show that

$\dim V \ge n,$

and the equality holds if and only if the characteristic polynomial of A equals the minimal polynomial of A.

Problem 2

A finite group G is supersolvable if there is an increasing chain of subgroups

$$\{1_G\} = G_0 \subset G_1 \subset \ldots \subset G_r = G$$

such that each G_i is normal in G, and G_{i+1}/G_i is cyclic for all i.

- (a) Show that every *p*-group is supersolvable.
- (b) Give an example of a solvable group that is not supersolvable.

Problem 3

Let A be the ring of $n \times n$ matrices over a field F.

- (a) Show that for any subspace V of F^n , the set I_V of matrices whose kernel contains V is a left ideal of A.
- (b) Show that every left ideal of A is principal.

Date: August 22, 2013.