ALGEBRA PRELIMINARY EXAM: PART II

Choose two of the following three problems.

Problem 1

Let K / F be a finite Galois extension and $g \in \operatorname{Gal}(K / F)$. Compute the characteristic polynomial of g, where g is considered as an F-linear map from K to K.
(Hint: first consider the case where K / F is cyclic, i.e., $\operatorname{Gal}(K / F)$ is a cyclic group.)

Problem 2

Consider the polynomial $f(x)=x^{6}-4 x^{3}+1$. Let L be the splitting field of $f(x)$ over \mathbb{Q}.
(a) Show that
(i) $f(x)$ has two real roots: α and α^{-1}.
(ii) $x^{3}-1$ splits in L.

Let $\zeta \in L$ be a primitive cube root of unity.
(b) Determine the degree of L / \mathbb{Q}. (You may use without proof the fact that when viewed modulo 5 the polynomial $f(x)$ does not have any quadratic factors in $\mathbb{F}_{5}[x]$.)
(c) Prove that $\sqrt[7]{5} \notin L$.
(d) Prove that $\operatorname{Gal}(L / \mathbb{Q}) \simeq D_{12}$, here D_{12} denotes the dihedral group of order 12 .
(Hint: consider the action of $\operatorname{Gal}(L / \mathbb{Q})$ on the roots of $f(x)$.)
(e) Use α and ζ to describe all the subfields $F \subseteq L$ such that L / F is quadratic and L / \mathbb{Q} is Galois.

Problem 3

Let $f(x) \in \mathbb{Z}[x]$ be a monic polynomial and $p \in \mathbb{Z}$ be a prime. Consider the reduction of $f(x)$ modulo p, denoted $\bar{f}(x) \in \mathbb{F}_{p}[x]$, and assume that \bar{f} has no multiple roots.

Let L / \mathbb{Q} be the splitting field of f. Consider the roots of $f(x)$

$$
\alpha_{1}, \ldots, \alpha_{r} \in L
$$

and the subring of L that they generate

$$
A:=\mathbb{Z}\left[\alpha_{1}, \ldots, \alpha_{r}\right] \subseteq L
$$

You may use without proof the fact that $A \cap \mathbb{Q}=\mathbb{Z}$.
Set $G:=\operatorname{Gal}(L / \mathbb{Q})$ and \bar{G} to be the Galois group of \bar{f} over \mathbb{F}_{p}.
(a) Consider the set S_{p} of maximal ideals $Q \subseteq A$ such that $Q \cap \mathbb{Z}=p \mathbb{Z}$. Show that the set S_{p} is non-empty, and that the action of G on L induces an action of G on S_{p}.
(b) Fix $P \in S_{p}$. Let $H \subseteq G$ be the stabilizer of the ideal P in G.
(i) Show that the choice of the maximal ideal $P \in S_{p}$ induces a homomorphism $\pi: H \rightarrow \bar{G}$.
(ii) Prove that the homomorphism $\pi: H \rightarrow \bar{G}$ is injective.
(Hint: consider the action of $\pi(h)$ on the roots of \bar{f} for $h \in H \backslash\left\{1_{G}\right\}$.)
(c) For every $a \in A$, there exists $t_{a} \in A$ such that

$$
\begin{aligned}
t_{a} & \equiv a \bmod P \\
g\left(t_{a}\right) & \in P \text { for } g \notin H .
\end{aligned}
$$

The existence of t_{a} (which you may assume without proof) is a consequence of the Chinese Remainder Theorem for the ring A. Using $t_{a} \in A$ as above, we define the polynomial

$$
w_{a}(x)=\prod_{g \in G}\left(x-g\left(t_{a}\right)\right) \in A[x] .
$$

(i) Show that $w_{a}(x) \in \mathbb{Z}[x]$, and let $\bar{w}_{a}(x)$ be its reduction modulo p. Show that if the reduction $\bar{a}(\bmod P)$ is non-zero, then every conjugate of \bar{a} is of form $\bar{h}(\bar{a})$ for some $h \in H$.
(ii) Prove that $\pi: H \rightarrow \bar{G}$ is an isomorphism.
(d) Consider the factorization of \bar{f} into irreducible factors in $\mathbb{F}_{p}[X]$

$$
\bar{f}=\bar{g}_{1} \cdot \bar{g}_{2} \cdots \bar{g}_{r}
$$

where $d_{i}:=\operatorname{deg}\left(\bar{g}_{i}\right)$. Prove that there exists an element $h \in H$ of cycle type $\left(d_{1}, d_{2}, \ldots, d_{r}\right)$, here h is viewed as a permutation of the roots of f.

Recall the cycle type refers to the lengths of the cycles when you express a permutation as a product of disjoint cycles. E.g. the permutation $(12)(345) \in S_{5}$ has cycle type $(2,3)$.

