PRELIMINARY EXAM IN ANALYSIS PART I – REAL ANALYSIS. AUGUST 26, 2013 – TIME: 9:00–10:30.

Name (**print**):

UT ID:

Please write clearly, and staple your work with the signed exam sheet on top !

Problem 1

(a) Provide an example of a sequence of measurable functions on [0, 1] which converges in L^1 to the zero function but does not converge pointwise a.e.

(b) Suppose that $\{f_n\}_{n=1}^{\infty}$ is a sequence of integrable functions on [0, 1] such that $||f_n||_{L^1} \leq n^{-2}$ holds for all n. Show that $\{f_n\}_{n=1}^{\infty}$ converges pointwise a.e. to the zero function.

Problem 2

Let $(x_1, x_2, ...)$ be an arbitrary sequence of real numbers in [0, 1] (possibly dense). Show that the series $\sum_k k^{-3/2} |x - x_k|^{-1/2}$ converges for almost every $x \in [0, 1]$.

Problem 3

Assume that μ is a finite Borel measure on \mathbb{R}^n , and that there exists a constant $0 < R < \infty$ such that the k-th moments of μ satisfy the bound

$$\int d\mu(x)|x|^k < R^{k^r} \quad \forall k \in \mathbb{N} \,,$$

for some $0 < r \le 1$. Prove that μ has bounded support contained in $\{x \in \mathbb{R}^n : |x| \le R\}$ if r = 1, and in $\{x \in \mathbb{R}^n : |x| \le 1\}$ if 0 < r < 1.

Problem 4

Let f be a continuous function on [0, 1]. Find

$$\lim_{n \to \infty} n \int_0^1 x^n f(x) \, dx.$$

Justify your answer.