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Part I

1. Consider the linear least squares problem

min
x
‖Ax− b‖2, (1)

where A ∈ Rm×n with m ≥ n.

(a) Derive the normal equations for solving (1).

(b) Show how to use QR decomposition and SVD (singular value decomposition) to solve (1).

(c) Suppose A does not have full column rank. Is the least squares solution unique? Char-
acterize all solutions in terms of the SVD of A.

(d) Suppose A does have full column rank, but many of its singular values are small (for
example, m = 100, n = 50, σ1 = 2, σ1, · · · , σ25 > 1 and σ26, . . . , σ50 < 10−13). How will
you solve the least squares problem (1) in this case? Discuss.

2. Consider g(x) = 1
2x+ 2x2 − 3

2x
3 and the iteration befined by xn+1 = g(xn).

(a) Show that for any x0 ∈ [0, 1], the sequence xn converges. For each n, xn is a function of
the initial value x0, and we denote such dependence as xn(x0). Find the limit function
g∞(x0) = limn→∞ xn(x0) for x0 ∈ [0, 1].

(b) For each x0 ∈ [0, 1], determine the order of convergence of {xn(x0)}.

3. Let a continuous function f : [a, b] → R and a non-negative, integrable weight function w :

[a, b] → R be given, where w(x) = 0 at only finitely many points. For any given n ≥ 0, let
Πn denote the space of polynomials of degree at most n, and consider the problem of finding
pn ∈ Πn to minimize the fitting error

E[pn] =

ˆ b

a
w(x)[pn(x)− f(x)]2 dx.

(a) Show that if E is minimized by pn(x) =
∑n

k=0 ckx
k, then c = (c0, . . . , cn) must necessarily

satisfy Ac = F for an appropriate A ∈ R(n+1)×(n+1) and F ∈ Rn+1.

(b) Show that A is symmetric, positive-definite. Moreover, show the polynomial p∗n with
coefficient vector c∗ = A−1F minimizes E over Πn, that is E[p∗n] ≤ E[pn] for all pn ∈ Πn.

(c) Show that the optimal polynomial approximation p∗n converges to f in the least-squares
sense, that is, E[p∗n]→ 0 as n→∞.


