Part I

1. Consider the linear least squares problem

$$\min_{x} \|Ax - b\|_2,\tag{1}$$

where $A \in \mathbb{R}^{m \times n}$ with $m \ge n$.

- (a) Derive the normal equations for solving (1).
- (b) Show how to use QR decomposition and SVD (singular value decomposition) to solve (1).
- (c) Suppose A does not have full column rank. Is the least squares solution unique? Characterize all solutions in terms of the SVD of A.
- (d) Suppose A does have full column rank, but many of its singular values are small (for example, $m = 100, n = 50, \sigma_1 = 2, \sigma_1, \dots, \sigma_{25} > 1$ and $\sigma_{26}, \dots, \sigma_{50} < 10^{-13}$). How will you solve the least squares problem (1) in this case? Discuss.
- 2. Consider $g(x) = \frac{1}{2}x + 2x^2 \frac{3}{2}x^3$ and the iteration befined by $x_{n+1} = g(x_n)$.
 - (a) Show that for any $x_0 \in [0, 1]$, the sequence x_n converges. For each n, x_n is a function of the initial value x_0 , and we denote such dependence as $x_n(x_0)$. Find the limit function $g_{\infty}(x_0) = \lim_{n \to \infty} x_n(x_0)$ for $x_0 \in [0, 1]$.
 - (b) For each $x_0 \in [0, 1]$, determine the order of convergence of $\{x_n(x_0)\}$.
- 3. Let a continuous function $f : [a, b] \to \mathbb{R}$ and a non-negative, integrable weight function $w : [a, b] \to \mathbb{R}$ be given, where w(x) = 0 at only finitely many points. For any given $n \ge 0$, let Π_n denote the space of polynomials of degree at most n, and consider the problem of finding $p_n \in \Pi_n$ to minimize the fitting error

$$E[p_n] = \int_a^b w(x)[p_n(x) - f(x)]^2 \, dx.$$

- (a) Show that if E is minimized by $p_n(x) = \sum_{k=0}^n c_k x^k$, then $c = (c_0, \ldots, c_n)$ must necessarily satisfy Ac = F for an appropriate $A \in \mathbb{R}^{(n+1) \times (n+1)}$ and $F \in \mathbb{R}^{n+1}$.
- (b) Show that A is symmetric, positive-definite. Moreover, show the polynomial p_n^* with coefficient vector $c^* = A^{-1}F$ minimizes E over Π_n , that is $E[p_n^*] \leq E[p_n]$ for all $p_n \in \Pi_n$.
- (c) Show that the optimal polynomial approximation p_n^* converges to f in the least-squares sense, that is, $E[p_n^*] \to 0$ as $n \to \infty$.