Part I

1. Consider the linear least squares problem

$$
\begin{equation*}
\min _{x}\|A x-b\|_{2}, \tag{1}
\end{equation*}
$$

where $A \in R^{m \times n}$ with $m \geq n$.
(a) Derive the normal equations for solving (1).
(b) Show how to use $Q R$ decomposition and SVD (singular value decomposition) to solve (1).
(c) Suppose A does not have full column rank. Is the least squares solution unique? Characterize all solutions in terms of the SVD of A.
(d) Suppose A does have full column rank, but many of its singular values are small (for example, $m=100, n=50, \sigma_{1}=2, \sigma_{1}, \cdots, \sigma_{25}>1$ and $\left.\sigma_{26}, \ldots, \sigma_{50}<10^{-13}\right)$. How will you solve the least squares problem (1) in this case? Discuss.
2. Consider $g(x)=\frac{1}{2} x+2 x^{2}-\frac{3}{2} x^{3}$ and the iteration befined by $x_{n+1}=g\left(x_{n}\right)$.
(a) Show that for any $x_{0} \in[0,1]$, the sequence x_{n} converges. For each n, x_{n} is a function of the initial value x_{0}, and we denote such dependence as $x_{n}\left(x_{0}\right)$. Find the limit function $g_{\infty}\left(x_{0}\right)=\lim _{n \rightarrow \infty} x_{n}\left(x_{0}\right)$ for $x_{0} \in[0,1]$.
(b) For each $x_{0} \in[0,1]$, determine the order of convergence of $\left\{x_{n}\left(x_{0}\right)\right\}$.
3. Let a continuous function $f:[a, b] \rightarrow \mathbb{R}$ and a non-negative, integrable weight function w : $[a, b] \rightarrow \mathbb{R}$ be given, where $w(x)=0$ at only finitely many points. For any given $n \geq 0$, let Π_{n} denote the space of polynomials of degree at most n, and consider the problem of finding $p_{n} \in \Pi_{n}$ to minimize the fitting error

$$
E\left[p_{n}\right]=\int_{a}^{b} w(x)\left[p_{n}(x)-f(x)\right]^{2} d x .
$$

(a) Show that if E is minimized by $p_{n}(x)=\sum_{k=0}^{n} c_{k} x^{k}$, then $c=\left(c_{0}, \ldots, c_{n}\right)$ must necessarily satisfy $A c=F$ for an appropriate $A \in \mathbb{R}^{(n+1) \times(n+1)}$ and $F \in \mathbb{R}^{n+1}$.
(b) Show that A is symmetric, positive-definite. Moreover, show the polynomial p_{n}^{*} with coefficient vector $c^{*}=A^{-1} F$ minimizes E over Π_{n}, that is $E\left[p_{n}^{*}\right] \leq E\left[p_{n}\right]$ for all $p_{n} \in \Pi_{n}$.
(c) Show that the optimal polynomial approximation p_{n}^{*} converges to f in the least-squares sense, that is, $E\left[p_{n}^{*}\right] \rightarrow 0$ as $n \rightarrow \infty$.

