Part II

1. Consider the finite difference approximation for the eikonal equation $u_{t}=\left|u_{x}\right|$:

$$
u_{j}^{n+1}=u_{j}^{n}+\frac{\Delta t}{\Delta x} \max \left(u_{j+1}^{n}-u_{j}^{n}, u_{j-1}^{n}-u_{j}^{n}, 0\right) .
$$

(a) Show that this is a consistent scheme.
(b) Show that the scheme can be written as

$$
u_{j}^{n+1}=(1-\lambda) u_{j}^{n}+\lambda \max \left(u_{j+1}^{n}, u_{j-1}^{n}, u_{j}^{n}\right), \lambda=\frac{\Delta t}{\Delta x} .
$$

(c) Show that for suitable values of λ, this scheme is stable in the $\|\cdot\|_{\ell \infty}$ norm in the spatial domain.
(d) Let $Z_{j}^{n}=u_{j}^{n}-u\left(x_{j}, t^{n}\right)$, where $u(x, t)$ a smooth solution of the PDE. Show that

$$
\left|Z_{j}^{n+1}\right| \leq \max _{j}\left(\left|Z_{j+1}^{n}\right|,\left|Z_{j}^{n}\right|,\left|Z_{j-1}^{n}\right|\right)+\text { Const } \Delta t \Delta x,
$$

and conclude that

$$
\left|u_{j}^{n}-u\left(x_{j}, t^{n}\right)\right| \leq \text { Const } T \Delta x,
$$

where $T=n \Delta t$. (Hint: verify the inequality $\left|\max _{j} X_{j}-\max _{j} Y_{j}\right| \leq \max _{j}\left|X_{j}-Y_{j}\right|$.)
2. Consider solving the following differential equation with periodic boundary conditons:

$$
u_{t}+a u_{x}=\epsilon u_{x x}, \quad t>0,0 \leq x<1
$$

where a and ϵ are two positive constants, and

$$
u(x, 0)=f(x) .
$$

(a) Set up a uniform grid over the interval $[0,1)$ and using the PDE, derive a system of ODEs for $\left\{\hat{u}_{k}\right\}$, where

$$
u\left(x_{j}, t\right)=\sum_{k=0}^{N-1} \hat{u}_{k}(t) e^{-2 \pi i k x_{j}}, x_{j}=j / N, j=0, \cdots, N-1 .
$$

(b) Propose a stable ODE scheme for solving the systems $\hat{u}_{k}(t)$. Justify your answer.
(c) What is the computational complexity of solving the system in part (b) and use it for computing approximation of $u(x, t)$ in the time interval $0<t \leq 1$.
3. Consider the following heat equation in two space dimensions,

$$
\begin{aligned}
u_{t} & =\Delta u, \quad|x|<1,|y|<1, t>0 \\
u & =0, \quad|x| \leq 1,|y|=1, t>0 \\
u_{x} & =u, \quad x=-1,|y|<1, t>0 \\
u_{x} & =-u, \quad x=1,|y|<1, t>0 \\
u(x, y, 0) & =u_{0}(x, y), \quad|x| \leq 1,|y| \leq 1
\end{aligned}
$$

(a) Derive a numerical approximation $u_{h}^{n}(x, y)$ by rewriting the heat equation in a variational form and formulating a method based on finite elements in space and Crank-Nicolson (trapezoidal rule) in time, $t_{n}=n \Delta t, n=0,1, \cdots$.
(b) Prove L^{2}-stability: $\left\|u_{h}^{n}\right\|_{L^{2}(|x|<1,|y|<1)} \leq\left\|u_{0}\right\|_{L^{2}(|x|<1,|y|<1)}$.

