The University of Texas at Austin
Department of Mathematics

Preliminary Examination in Probability
 Part I

August 19th, 2013
Problem 2.1. Let $X_{n} \geq 0$ be a sequence of random variables such that there exist $0<\alpha<\beta$ with the property that

$$
\mathbb{E}\left[X_{n}^{\alpha}\right] \rightarrow 1, \quad \mathbb{E}\left[X_{n}^{\beta}\right] \rightarrow 1
$$

for $n \rightarrow \infty$. Show that $X_{n} \rightarrow 1$ in probability.
Problem 2.2. Let $X_{0}=(1,0)$ and define $X_{n} \in \mathbb{R}^{2}$ inductively by declaring that X_{n+1} is chosen at random from the ball of radius $\left|X_{n}\right|$ centered at the origin, i.e.. $X_{n+1} /\left|X_{n}\right|$ is uniformly distributed on the ball of radius one and indepedent of X_{1}, \ldots, X_{n}. Prove that

$$
\frac{\log \left(\left|X_{n}\right|\right)}{n} \rightarrow c, \quad \text { a.s. }
$$

and compute c.
Problem 2.3. (1) Consider an adapted process $\left(X_{n}\right)_{n}$ such that for any bounded stopping time T we have $X_{T} \in L^{1}$ and

$$
\mathbb{E}\left[X_{T}\right]=\mathbb{E}\left[X_{0}\right]
$$

Show that X is a martingale.
(2) Let $\left(X_{n}\right)_{n}$ a simple but non-symmetric random walk with probabilities to go up and down p and q. Fix a time horizon N (deterministic). Compute

$$
\sup _{0 \leq T \leq N} \mathbb{E}\left[X_{T}\right]
$$

where supremum is taken over all possible stopping times.

