The University of Texas at Austin
Department of Mathematics: e

The Preliminary Examination in Probability Part II

Aug 19, 2013

Problem 1. Let $\left\{B_{t}\right\}_{t \in[0, \infty)}$ be the Brownian motion, and let σ be the last visit of the level 0 before time $t=1$, i.e.,

$$
\sigma=\sup \left\{t \leq 1: B_{t}=0\right\}
$$

(1) Show that σ is not a stopping time (Hint: Use the martingale $B_{t}^{2}-t$.)
(2) Show that

$$
\sigma \stackrel{(d)}{=} \frac{X^{2}}{X^{2}+Y^{2}},
$$

where X, Y are independent unit normals.

Problem 2. Let M and N be two continuous local martingales. Show that $\mathcal{E}(M) \mathcal{E}(N)$ is a local martingale if and only if $M N$ is a local martingale. (Note: $\mathcal{E}(X)_{t}=\exp \left(X_{t}-\frac{1}{2}[X, X]_{t}\right)$.)

Problem 3. Let $\left\{B_{t}\right\}_{t \in[0, \infty)}$ be the Brownian motion. For $c \in \mathbb{R}$ compute

$$
\mathbb{P}\left[B_{t}+c t<1, \text { for all } t \geq 0\right] .
$$

(Hint: Either use Girsanov's theorem, of construct a function f such that $f\left(B_{t}+c t\right)$ is a martingale.)

