Algebra Prelim part B

January 7, 2014
Directions: You have 90 minutes. Answer two questions; specify clearly which problems you want graded.

B1. Let R be an integral domain such that every prime ideal of R is principal.
(a) Consider the set of ideals of R which are not principal. Prove that if this set is non-empty, then it contains an element I which is maximal under inclusion.
(b) Prove that R is a principal ideal domain. (Hint: Show that I is principal.)

B2. Suppose that E / F is a Galois field extension and every subextension is normal.
(a) Show that $\operatorname{Gal}(E / F)$ is nilpotent. (Of the various formulations of nilpotence, you may use: a finite group is nilpotent if and only if it is a product of Sylow p-subgroups.)
(b) Give an example to show that it need not be abelian.

B3. Recall that $\mathbf{Q}(t)$ denotes the field of rational functions with coefficients in \mathbf{Q}, and similarly with \mathbf{C} in place of Q.
(a) Show that the Galois group of the splitting field K of the polynomial

$$
f(x)=x^{4}-t x^{2}-1
$$

over $\mathbf{Q}(t)$ is the dihedral group of order eight.
(b) Show that K contains $i=\sqrt{-1}$.
(c) Show that the splitting field of f over $\mathbf{C}(t)$ is $\mathbf{Z} / 2 \times \mathbf{Z} / 2$.

