PRELIMINARY EXAMINATION IN ANALYSIS Part I, Real Analysis

January 6, 2014

Solve 4 of the following 5 problems.

1. Let f and g be bounded measurable functions on \mathbb{R}^{n}. Assume that g is integrable and satisfies $\int g=0$. Define $g_{k}(x)=k^{n} g(k x)$ for $k \in \mathbb{N}$. Show that $f * g_{k} \rightarrow 0$ pointwise almost everywhere, as $k \rightarrow \infty$.
2. Let $0<q<p<\infty$. Let $E \subset \mathbb{R}^{n}$ be measurable with measure $|E|<\infty$. Let f be a measurable function on \mathbb{R}^{n} such that $N \stackrel{\text { def }}{=} \sup _{\lambda>0} \lambda^{p}\left|\left\{x \in \mathbb{R}^{n}:|f(x)|>\lambda\right\}\right|$ is finite.
(a) Prove that $\int_{E}|f|^{q}$ is finite.
(b) Refine the argument of (a) to prove that

$$
\int_{E}|f|^{q} \leq C N^{q / p}|E|^{1-q / p}
$$

where C is a constant that depends only on n, p, and q.
3. Is the function $f:[0,1] \rightarrow \mathbb{R}$ defined by $f(x)= \begin{cases}x \sin (1 / x) & \text { if } x>0, \\ 0 & \text { if } x=0,\end{cases}$ absolutely continuous on $[0,1]$? Explain fully.
4. Consider the Hardy-Littlewood maximal function (for balls)

$$
M f(x)=\sup _{B \ni x} \frac{1}{|B|} \int_{B}|f|, \quad f(x)=\left\{\begin{array}{ll}
1 & \text { if }|x| \leq 1, \\
0 & \text { if }|x|>1,
\end{array} \quad x \in \mathbb{R}^{n}\right.
$$

where the supremum is taken over all balls $B \subset \mathbb{R}^{n}$ containing x. Prove that $M f$ belongs to $\in L_{\text {weak }}^{1}\left(\mathbb{R}^{n}\right)$.
5. Let (X, Σ, μ) be a finite measure space and $1 \leq q<p<\infty$. Let $f_{1}, f_{2}, \ldots \in \mathrm{~L}^{p}(X, \mu)$ with $\left\|f_{k}\right\|_{p} \leq 1$ for all k. Assuming $f_{k} \rightarrow f$ in measure, show that $f \in \mathrm{~L}^{p}(X, \mu)$, and that $\left\|f_{k}-f\right\|_{q} \rightarrow 0$.

