PRELIMINARY EXAMINATION IN ANALYSIS Part I, Real Analysis

January 6, 2014

Solve 4 of the following 5 problems.

- 1. Let f and g be bounded measurable functions on \mathbb{R}^n . Assume that g is integrable and satisfies $\int g = 0$. Define $g_k(x) = k^n g(kx)$ for $k \in \mathbb{N}$. Show that $f * g_k \to 0$ pointwise almost everywhere, as $k \to \infty$.
- **2.** Let $0 < q < p < \infty$. Let $E \subset \mathbb{R}^n$ be measurable with measure $|E| < \infty$. Let f be a measurable function on \mathbb{R}^n such that $N \stackrel{\text{def}}{=} \sup_{\lambda > 0} \lambda^p |\{x \in \mathbb{R}^n : |f(x)| > \lambda\}|$ is finite.
 - (a) Prove that $\int_{E} |f|^{q}$ is finite.
 - (b) Refine the argument of (a) to prove that

$$\int_E |f|^q \le C N^{q/p} |E|^{1-q/p} \,,$$

where C is a constant that depends only on n, p, and q.

- **3.** Is the function $f: [0,1] \to \mathbb{R}$ defined by $f(x) = \begin{cases} x \sin(1/x) & \text{if } x > 0, \\ 0 & \text{if } x = 0, \end{cases}$ absolutely continuous on [0,1]? Explain fully.
- **4.** Consider the Hardy-Littlewood maximal function (for balls)

$$Mf(x) = \sup_{B \ni x} \frac{1}{|B|} \int_{B} |f|, \qquad f(x) = \begin{cases} 1 & \text{if } |x| \le 1, \\ 0 & \text{if } |x| > 1, \end{cases} \quad x \in \mathbb{R}^{n},$$

where the supremum is taken over all balls $B \subset \mathbb{R}^n$ containing x. Prove that Mf belongs to $\in L^1_{weak}(\mathbb{R}^n)$.

5. Let (X, Σ, μ) be a finite measure space and $1 \le q . Let <math>f_1, f_2, \ldots \in L^p(X, \mu)$ with $||f_k||_p \le 1$ for all k. Assuming $f_k \to f$ in measure, show that $f \in L^p(X, \mu)$, and that $||f_k - f||_q \to 0$.