PRELIMINARY EXAMINATION IN ANALYSIS Part II, Complex Analysis

January 6, 2014

Solve 4 of the following 5 problems.

- **1.** Let f be an entire function and define $M(r) = \max_{|z|=r} |f(z)|$. Show that M is a continuous function on $[0, \infty)$.
- 2. Show that for any real number $\lambda > 1$ and any integer $n \ge 1$, the equation $z^n e^{\lambda z} = 1$ has exactly *n* solutions in the unit disk $|z| \le 1$, with exactly one being real and positive.
- **3.** Assume that f is an entire function of finite order. Prove that if $|f(z)| \leq 1$ for all z on the boundary of the horizontal half-strip $S = \{z \in \mathbb{C} : \operatorname{Re}(z) \geq 0, |\operatorname{Im}(z)| \leq 1\}$, then $|f(z)| \leq 1$ for all $z \in S$. Hint. Consider $f(z) e^{-\epsilon z^n}$, with n chosen appropriately and $\epsilon > 0$.
- 4. Suppose f is an entire function with the property that f(z) is real if and only if z is real. Show that $f'(z) \neq 0$ for all real z.
- **5.** Let $G \subset \mathbb{C}$ be open, and define $\Omega = \{z \in \mathbb{C} : z^4 \in G\}$. Assume that f is analytic on Ω and satisfies f(iz) = f(z) for all $z \in \Omega$. Show that there exists an analytic function g on G, such that $f(z) = g(z^4)$ for all $z \in \Omega$.