PRELIMINARY EXAMINATION IN ANALYSIS
 Part II, Complex Analysis

January 6, 2014

Solve 4 of the following 5 problems.

1. Let f be an entire function and define $M(r)=\max _{|z|=r}|f(z)|$. Show that M is a continuous function on $[0, \infty)$.
2. Show that for any real number $\lambda>1$ and any integer $n \geq 1$, the equation $z^{n} e^{\lambda-z}=1$ has exactly n solutions in the unit disk $|z| \leq 1$, with exactly one being real and positive.
3. Assume that f is an entire function of finite order. Prove that if $|f(z)| \leq 1$ for all z on the boundary of the horizontal half-strip $S=\{z \in \mathbb{C}: \operatorname{Re}(z) \geq 0,|\operatorname{Im}(z)| \leq 1\}$, then $|f(z)| \leq 1$ for all $z \in S$.
Hint. Consider $f(z) e^{-\epsilon z^{n}}$, with n chosen appropriately and $\epsilon>0$.
4. Suppose f is an entire function with the property that $f(z)$ is real if and only if z is real. Show that $f^{\prime}(z) \neq 0$ for all real z.
5. Let $G \subset \mathbb{C}$ be open, and define $\Omega=\left\{z \in \mathbb{C}: z^{4} \in G\right\}$. Assume that f is analytic on Ω and satisfies $f(i z)=f(z)$ for all $z \in \Omega$. Show that there exists an analytic function g on G, such that $f(z)=g\left(z^{4}\right)$ for all $z \in \Omega$.
