PRELIMINARY EXAMINATION: APPLIED MATHEMATICS I

January 8, 2014, 1:00-2:30 p.m.

Work all 3 of the following 3 problems.

1. Let X and Y be Banach spaces, and let B(X, Y) denote the space of bounded linear mappings of X into Y, with operator norm $|| \cdot ||_{B(X,Y)}$.

(a) Let *I* be the identity mapping of *X* to itself. Show that for every $A \in B(X, X)$ such that $||A||_{B(X,X)} < 1$, the operator (I - A) is bijective. [Hint: Consider the mapping $\sum_{n=0}^{\infty} A^n$.]

(b) Show that $E = \{A \in B(X, X) \mid A \text{ is bijective}\}$ is open in B(X, X).

(c) Show by counter example that $G = \{A \in B(X, Y) \mid A \text{ is injective}\}$ is generally not open in B(X, Y). [Hint: Consider the map $g \in C^0[0, 1] \mapsto g\mathbf{1}_{\{x \in [\epsilon, 1]\}} \in L^2(0, 1)$].

2. Let $\{f_k\}$ be a sequence bounded both in $L^2(\mathbb{R}^n)$ and $L^{\infty}(\mathbb{R}^n)$. Assume that f_k converges pointwise almost everywhere to $f \in L^2(\mathbb{R}^n)$.

(a) Show that the entire sequence $\{f_k\}$ converges weakly to f in $L^2(\mathbb{R}^n)$. [Hint: consider first compactly supported test functions].

(b) If additionally $||f_k||_{L^2} \to ||f||_{L^2}$, show that the entire sequence $\{f_k\}$ strongly converges to f in $L^2(\mathbb{R}^n)$.

3. For $f \in L^2(0,\infty)$, define

$$(Tf)(x) = \frac{1}{x} \int_0^x f(s) \, ds \qquad \text{for } x \in (0, \infty).$$

(a) Show that T is a bounded linear operator on $L^2(0,\infty)$. [Hint: Use an integration by parts, noting that $1/x^2 = (-1/x)'$].

(b) Show that T is not compact by considering the sequence $f_n(x) = \sqrt{n} \mathbf{1}_{\{x \in [0, 1/n]\}}$.