PRELIMINARY EXAMINATION: APPLIED MATHEMATICS II

January 8, 2014, 2:40-4:10 p.m.
Work all 3 of the following 3 problems.

1. Let X and Y be normed vector spaces, and let $[a, b]$ and (a, b) denote closed and open line segments between two given points $a, b \in X$.
(a) Let $f: X \rightarrow Y$ be a function which is continuous on the segment $[a, b]$ and differentiable on the segment (a, b), and let $A \in B(X, Y)$ be given. Use an appropriate Mean Value Theorem to show that

$$
\|f(b)-f(a)-A(b-a)\|_{Y} \leq M\|b-a\|_{X} \quad \text { where } \quad M=\sup _{x \in(a, b)}\|D f(x)-A\|_{B(X, Y)} .
$$

(b) Let $g: X \rightarrow Y$ be a function which is continuous in X and differentiable in $X-\{a\}$. Show that, if $L:=\lim _{x \rightarrow a} D g(x)$ exists, then g is differentiable at a and $D g(a)=L$.
(c) Consider $g: X \rightarrow \mathbb{R}$ where $g(x)=\|x\|_{X}$. Show that g cannot be differentiable at $x=0$. Moreover, if g happens to be differentiable for all $x \neq 0$, show that $\lim _{x \rightarrow 0} D g(x)$ cannot exist.
2. Given a bounded, Lipschitz domain $\Omega \subset \mathbb{R}^{d}$ and data $a \in\left[L^{\infty}(\Omega)\right]^{d \times d}$ (symmetric, uniformly positive-definite), $b \in\left[L^{\infty}(\Omega)\right]^{d}, c \in L^{\infty}(\Omega)$ and $f \in H^{-1}(\Omega)$, consider the problem of finding $u \in H_{0}^{1}(\Omega)$ such that

$$
\begin{equation*}
\alpha(u, v)+\beta(u, v)=\gamma(v), \quad \forall v \in H_{0}^{1}(\Omega), \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
\alpha(u, v) & =(a \nabla u, \nabla v)_{L^{2}}, \\
\beta(u, v) & =(b \cdot \nabla u+c u, v)_{L^{2}}, \\
\gamma(v) & =\langle f, v\rangle_{H^{-1}, H_{0}^{1}} .
\end{aligned}
$$

(a) Define carefully the linear operator A so that $(A u, v)_{H_{0}^{1}}=\alpha(u, v)$. Show that this A maps $H_{0}^{1}(\Omega)$ onto itself and is continuously invertible.
(b) Show that the linear operator B defined by $(B u, v)_{H_{0}^{1}}=\beta(u, v)$ maps $H_{0}^{1}(\Omega)$ into itself and is compact. [Hint: use the fact that B is compact if its Hilbert-adjoint B^{*} is.]
(c) Show that (1) is equivalent to the operator equation $(A+B) u=F$ for an appropriate $F \in H_{0}^{1}(\Omega)$.
3. Given $I=[0, b]$, consider the problem of finding $u: I \rightarrow \mathbb{R}$ such that

$$
\left\{\begin{align*}
u^{\prime}(s) & =g(s) f(u(s)), \quad \text { for a.e. } s \in I, \tag{2}\\
u(0) & =\alpha
\end{align*}\right.
$$

where $\alpha \in \mathbb{R}$ is a given constant, $g \in L_{p}(I), p \geq 1$, and $f: \mathbb{R} \rightarrow \mathbb{R}$ are given functions. We suppose f is Lipschitz continuous and satisfies $f(0)=0$.
(a) Consider the functional

$$
F(u)=\alpha+\int_{0}^{s} g(\sigma) f(u(\sigma)) d \sigma
$$

Show that F maps $C^{0}(I)$ into $C^{0}(I) \cap W^{1, p}(I)$. Moreover, show that $u \in C^{0}(I) \cap W^{1, p}(I)$ satisfies (2) if and only if it is a fixed point of F.
(b) Show that (2) has a unique solution $u \in C^{0}(I) \cap W^{1, p}(I)$ for any $g \in L_{p}(I)$ and $b>0$.

