The University of Texas at Austin
 Department of Mathematics

The Preliminary Examination in Probability
 Part I

Jan 10, 2014

Problem 1 (35pts). Let $T:[0,1] \rightarrow[0,1]$ be the fractional-reciprocal map given by $T(0)=0$ and $T(x)=\{1 / x\}$ for $x \in(0,1]$,
where $\{a\}=a-\lfloor a\rfloor$ denotes the fractional part of a. Show that the measure μ, given by $\mu(B)=\int_{B} \frac{1}{1+x} d x$ for $B \in \mathcal{B}([0,1])$, is preserved by T, i.e., that

$$
\mu=T_{*} \mu,
$$

where $T_{*} \mu$ denotes the pushforward of μ via T.

Problem 2 (35pts). Let X_{1} and X_{2} be two independent unit normals and let $T_{\alpha}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ denote the rotation by the angle $\alpha \in[0,2 \pi)$.
(1) Show that the distribution of the random vector $\left(X_{1}, X_{2}\right)$ is invariant under independent random rotations, i.e., that $T_{\delta}\left(X_{1}, X_{2}\right) \stackrel{(d)}{=}\left(X_{1}, X_{2}\right)$, where δ is a $[0,2 \pi)$-valued random variable, independent of (X_{1}, X_{2})
(2) $\left(^{*}\right)$ Let γ be random variable, independent of $\left(X_{1}, X_{2}\right)$ and uniformly distributed on $[0,2 \pi)$, and let ξ be a random variable measurable in $\sigma\left(X_{1}, X_{2}\right)$. Show that $T_{\gamma^{\prime}}\left(X_{1}, X_{2}\right) \stackrel{(d)}{=} T_{\gamma}\left(X_{1}, X_{2}\right)$, where $\gamma^{\prime}=\gamma+\xi(\bmod 2 \pi)$.
(3) $\left(^{*}\right)$ For a Borel function $f:[0, \infty) \rightarrow[0,2 \pi)$, determine the distribution of the random vector $\left(Y_{1}, Y_{2}\right)=T_{f\left(X_{1}^{2}+X_{2}^{2}\right)}\left(X_{1}, X_{2}\right)$. (Note: In words, $\left(Y_{1}, Y_{2}\right)$ is a rotated copy of $\left(X_{1}, X_{2}\right)$, by the angle $\alpha=f\left(X_{1}^{2}+X_{2}^{2}\right)$ which depends on $\left(X_{1}, X_{2}\right)$ only through $X_{1}^{2}+X_{2}^{2}$.)
(Note: Parts (2) and (3) - marked by $(*)$ - are extra credit.)

Problem 3 (30pts). For $X, Y \in \mathcal{L}^{2}(\mathcal{F})$ and a σ-algebra $\mathcal{G} \subseteq \mathcal{F}$, give detailed proofs of the following statements: (1) $X \mathbb{E}[Y \mid \mathcal{G}], Y \mathbb{E}[X \mid \mathcal{G}] \in \mathbb{L}^{1}$. (2) $\mathbb{E}[X \mathbb{E}[Y \mid \mathcal{G}]]=\mathbb{E}[Y \mathbb{E}[X \mid \mathcal{G}]]$.

