ALGEBRA PRELIMINARY EXAM: PART II

Problem 1

Let K be a field and $f(x), g(x) \in K[x]$ be irreducible quadratic polynomials. Show that $K[x, y] /(f(x), g(y))$ is a field if and only if $K[x] /(f(x))$ and $K[x] /(g(x))$ are non-isomorphic.

Problem 2

Let \mathbb{Q} be the field of rational numbers and ζ a primitive 9-th root of unity in an algebraic closure of \mathbb{Q}.
(1) Show that $\mathbb{Q}(\zeta)$ has a subfield K with K / \mathbb{Q} Galois of degree 3.
(2) Find a polynomial $f(x)$ of degree 3 and integer coefficients whose splitting field is K.
(3) Let p be a prime and $g(x) \in \mathbb{F}_{p}[x]$ of degree 3 and non-zero discriminant such that $g(x) \equiv f(x)(\bmod p)$. Show that if $p \equiv-1(\bmod 9)$ then $g(x)$ has all its roots in \mathbb{F}_{p}.

Problem 3

Let $f(x), g(x) \in \mathbb{F}_{p}[x]$, where \mathbb{F}_{p} is the finite field with p elements. Suppose that

$$
\max \{\operatorname{deg} f, \operatorname{deg} g\}<p
$$

Prove that $\mathbb{F}_{p}(x)$ is a separable extension of $\mathbb{F}_{p}\left(\frac{f(x)}{g(x)}\right)$.

