PRELIMINARY EXAM IN ANALYSIS PART I – REAL ANALYSIS. AUGUST 25, 2014 – TIME: 1:00-2:30 PM

Name (**print**):

____ UT ID: _____

Please write clearly, and staple your work with the signed exam sheet on top !

Problem 1

Let $1 \leq p, q \leq \infty$ with $\frac{1}{p} + \frac{1}{q} = 1$. Show that if $f \in L^p(\mathbb{R}^n)$ and $g \in L^q(\mathbb{R}^n)$ then f * g is bounded and continuous on \mathbb{R}^n .

Problem 2

Let $f \in L^1(X, \mu)$. Prove that for every $\epsilon > 0$, there exists $\delta > 0$ such that

$$\Big| \, \int_A f d\mu \, \Big| < \epsilon$$

holds whenever A is a measurable subset of X with $\mu(A) < \delta$.

Problem 3

Let $p \in [1, \infty)$ and suppose $\{f_n\}_{n=1}^{\infty} \subset L^p(\mathbb{R})$ is a sequence that converges to 0 in the L^p norm. Prove that one can find a subsequence $\{f_{n_k}\}$ such that $f_{n_k} \to 0$ almost everywhere.

Problem 4

Recall that a sequence $\{f_i\}_{i=1}^{\infty}$ of real-valued measurable functions on the real line is said to converge in measure to a function f if

$$\lim_{i \to \infty} \lambda(\{x \in \mathbb{R} : |f_i(x) - f(x)| \ge \epsilon\}) = 0 \quad \forall \epsilon > 0$$

where λ denotes Lebesgue measure on \mathbb{R} . Suppose that in addition to this, there exists an integrable function g such that $|f_i| \leq g$ for all i. Prove that $\{f_i\}_{i=1}^{\infty}$ converges to f in $L^1(\mathbb{R})$.

Problem 5

Show that, if $f \in L^4(\mathbb{R})$ then

$$\int \left| f(\lambda x) - f(x) \right|^4 dx \to 0$$

as $\lambda \to 1$.