PRELIMINARY EXAMINATION: APPLIED MATHEMATICS - Part I

August 20, 2014, 1:00-2:30
Work all 3 of the following 3 problems.

1. Let X and Y be Banach spaces, $T \in B(X, Y)$, and T be bounded below.
(a) Show that T is a injective.
(b) Show that the range of $T, R(T)$, is closed in Y.
(c) Give a simple example of T that is bounded below but not surjective.
(d) Define $\tilde{T}: X \rightarrow R(T)$ by $\tilde{T} x=T x$ for all $x \in X$. Show that \tilde{T} is a bijective, bounded linear map.
2. Given an open set $\Omega \subset \mathbb{R}^{n}$ and a measurable function $a: \Omega \rightarrow \mathbb{R}$ define

$$
(T u)(x)=a(x) u(x) \quad \forall x \in \Omega .
$$

Assume $T u \in L^{q}(\Omega)$ for every $u \in L^{p}(\Omega)$ for some $1 \leq q \leq p \leq \infty$.
(a) Show that the map $T: L^{p}(\Omega) \rightarrow L^{q}(\Omega)$ is bounded. [Hint: Consider uniform boundedness of a sequence of approximating operators.]
(b) Show that $a \in L^{r}(\Omega)$, where $r=p q /(p-q)$ if $p<\infty$ and $r=q$ if $p=\infty$.
3. Let X and Y be Banach spaces, let $A: X \rightarrow Y$ be bounded, linear and surjective, let $B: X \rightarrow Y$ be bounded and linear, and let $\alpha=\|A-B\|$.
(a) Show that there exists $\sigma>0$ such that $\bar{B}_{r}^{Y} \subset A \bar{B}_{r / \sigma}^{X}$ for all $r>0$, where \bar{B}_{r}^{X} and \bar{B}_{r}^{Y} are closed balls of radius r about the origin in X and Y, respectively.
(b) For given $f \in Y$, let $y_{n} \in Y$ and $x_{n} \in X$ be sequences such that

$$
y_{0}=f, \quad A x_{n}=y_{n}, \quad \text { and } \quad y_{n+1}=y_{n}-B x_{n} \quad \text { for } n \geq 0 .
$$

Show that the required x_{n} can be chosen such that

$$
\left\|y_{n}\right\| \leq(\alpha / \sigma)^{n}\|f\| \quad \text { and } \quad\left\|x_{n}\right\| \leq \sigma^{-1}(\alpha / \sigma)^{n}\|f\| \quad \text { for } n \geq 0 .
$$

[Hint: Use induction.]
(c) If α is sufficiently small, show that $\sum_{n=0}^{\infty} x_{n}$ converges and $B\left(\sum_{n=0}^{\infty} x_{n}\right)=f$, and conclude that B must also be surjective.

PRELIMINARY EXAMINATION: APPLIED MATHEMATICS - Part II

August 20, 2014, 2:40-4:10 p.m.

Work all 3 of the following 3 problems.
4. Let $\mathcal{S}=\mathcal{S}\left(\mathbb{R}^{d}\right)$ denote the Schwartz space and \hat{f} denote the Fourier transform of $f \in \mathcal{S}$.
(a) Prove that for $f, \phi \in \mathcal{S}$,

$$
\lim _{\epsilon \rightarrow 0^{+}} \int f(x) \epsilon^{-d} \hat{\phi}(x / \epsilon) d x=f(0) \int \hat{\phi}(x) d x
$$

(b) Prove that for $f \in \mathcal{S}$,

$$
f(x)=(2 \pi)^{-d / 2} \int \hat{f}(\xi) e^{i x \cdot \xi} d x
$$

5. Let H and W be real Hilbert spaces and let $V \subset H$ be a linear subspace. Let $A: H \rightarrow H$ and $B: V \rightarrow W$ be bounded linear operators, where we give V the norm $\|v\|_{V}=\|v\|_{H}+$ $\|B v\|_{W}$. For any $f \in V$ and $0 \leq \delta<1$, consider the problem: Find $(u, p) \in V \times W$ such that

$$
\begin{aligned}
& \langle A u, v\rangle_{H}-\left\langle B^{*} p, v\right\rangle_{H}+\langle B u, w\rangle_{W}+\langle p, w\rangle_{W}+\delta\langle B u, B v\rangle_{W}+\delta\langle p, B v\rangle_{W} \\
& \quad=\langle f, v\rangle_{H} \quad \forall(v, w) \in V \times W
\end{aligned}
$$

Assume that A is coercive on V (i.e., there is $\alpha>0$ such that $\alpha\|v\|_{V}^{2} \leq\langle A v, v\rangle_{V}$).
(a) Assuming there is a solution, find a bound on the norm of the solution (u, p).
(b) Show that there is a unique solution for any $\delta \in(0,1)$.
(c) Show that there is a unique solution for $\delta=0$. [Hint: Replace w by $w-\delta B v$.]
6. Let X and Y be normed vector spaces, and let $[a, b]$ and (a, b) denote closed and open line segments between two given points $a, b \in X$.
(a) Let $f: X \rightarrow Y$ be a function which is continuous on the segment $[a, b]$ and differentiable on the segment (a, b), and let $A \in B(X, Y)$ be given. Show that

$$
\|f(b)-f(a)-A(b-a)\|_{Y} \leq M\|b-a\|_{X}, \quad \text { where } \quad M=\sup _{x \in(a, b)}\|D f(x)-A\|_{B(X, Y)}
$$

(b) Let $g: X \rightarrow Y$ be a function which is continuous in X and differentiable in $X \backslash\{a\}$. Show that, if $L:=\lim _{x \rightarrow a} D g(x)$ exists, then g is differentiable at a and $D g(a)=L$.
(c) Consider $g: X \rightarrow \mathbb{R}$ where $g(x)=\|x\|_{X}$. Show that g cannot be differentiable at $x=0$.

