The University of Texas at Austin
 Department of Mathematics

The Preliminary Examination in Probability Part I

Friday, Aug 22, 2014
(Note: Remember that a random variable ξ is called a coin toss if $\mathbb{P}[\xi=1]=\mathbb{P}[\xi=-1]=\frac{1}{2}$.)

Problem 1.

(1) (Chernoff-Hoeffding bounds for coin tosses). Let $\left\{\xi_{n}\right\}_{n \in \mathbb{N}}$ be an iid sequence of coin tosses. Show that $\mathbb{E}\left[e^{t \xi_{1}}\right] \leq \exp \left(\frac{1}{2} t^{2}\right)$ for all $t>0$ and use it to prove that, for all $a>0$ and $n \in \mathbb{N}$, we have

$$
\mathbb{P}\left[\sum_{i=1}^{n} \xi_{i} \geq a\right] \leq e^{-a^{2} /(2 n)} \text { and } \mathbb{P}\left[\left|\sum_{i=1}^{n} \xi_{i}\right| \geq a\right] \leq 2 e^{-a^{2} /(2 n)}
$$

(2) (Random matrices). Given $n, m \in \mathbb{N}$, let \boldsymbol{A} be an $n \times m$ matrix with entries in the set $\{0,1\}$, and let \boldsymbol{X} be a random vector whose components $\boldsymbol{X}=\left(X_{1}, \ldots, X_{m}\right)$ are independent coin tosses. Consider the random variable $\|\boldsymbol{Y}\|_{\infty}=\max _{i=1, \ldots, n}\left|Y_{i}\right|$, where the vector $\boldsymbol{Y}=$ $\left(Y_{1}, \ldots, Y_{n}\right)$ is given by $\boldsymbol{Y}=\boldsymbol{A} \boldsymbol{X}$. Show that

$$
\mathbb{P}\left[\|\boldsymbol{Y}\|_{\infty} \geq \sqrt{4 m \log n}\right] \leq \frac{2}{n}
$$

(Hint: Establish an inequality of the same type for each $i=1, \ldots, n$: consider separately the cases where the number of 1 s in the i-th row of \boldsymbol{A} is above or below $\sqrt{4 m \log n}$.)

Problem 2 (Randomness out of thin air). Let $\left\{\left(X_{n}, Y_{n}\right)\right\}_{n \in \mathbb{N}}$ be a sequence of random vectors (possibly defined on different probability spaces) converging weakly to the random vector (X, Y). Show, by means of an example, that it is possible that $Y_{n} \in \sigma\left(X_{n}\right)$ for all $n \in \mathbb{N}$, but $Y \notin \sigma(X)$. (Hint: Take X_{n} uniform on $[0,1)$ and let Y_{n} be the n-th digit in the binary expansion of X_{n})

Problem 3 (Conditional expectation is not a projection in \mathbb{L}^{1}). Let X and Y be two square-integrable random variables (on the same probability space).
(1) If $f(x)=x^{2}$, show that $\mathbb{E}[f(X-\mathbb{E}[X \mid \sigma(Y)])] \leq \mathbb{E}[f(X-h(Y))]$ for any Borel $h: \mathbb{R} \rightarrow \mathbb{R}$ with $h(Y)$ square integrable.
(2) Show that (1) above no longer holds true if we take $f(x)=|x|$. (Hint: A 3-element probability space will suffice.)

