Algebra Prelim Part B January 2015

1. Describe the subgroup of S_{n} that fixes the polynomial $x_{1}+x_{2}$ under the standard action on $\mathbf{Q}\left[x_{1}, \ldots, x_{n}\right]$ obtained by permuting variables. Use this to give an upper bound for the degree over \mathbf{Q} of the real part of $z \in \mathbf{C}$, if z is algebraic of degree n over \mathbf{Q}. Give a condition under which the bound is sharp. (Here \mathbf{Q}, \mathbf{C} are the fields of rational and complex numbers, respectively).
2. Let K be a field and $f(x) \in K[x]$ be a separable, irreducible polynomial of degree 5 . If a, b are distinct roots of $f(x)$ with $K(a)=K(b)$, show that $K(a) / K$ is Galois.
3. Let K / \mathbf{Q} be an extension of degree n, where \mathbf{Q} is the field of rational numbers. Show that the number of subfields of K is at most $2^{n!}$. Suppose that $K=\mathbf{Q}(\alpha, \beta)$ and prove that there exists $m, 0 \leq m \leq 2^{n!}$ such that $K=\mathbf{Q}(\alpha+m \beta)$.
