Algebra Prelim Part B January 2015

1. Describe the subgroup of S_n that fixes the polynomial $x_1 + x_2$ under the standard action on $\mathbf{Q}[x_1, \ldots, x_n]$ obtained by permuting variables. Use this to give an upper bound for the degree over \mathbf{Q} of the real part of $z \in \mathbf{C}$, if z is algebraic of degree n over \mathbf{Q} . Give a condition under which the bound is sharp. (Here \mathbf{Q}, \mathbf{C} are the fields of rational and complex numbers, respectively).

2. Let K be a field and $f(x) \in K[x]$ be a separable, irreducible polynomial of degree 5. If a, b are distinct roots of f(x) with K(a) = K(b), show that K(a)/K is Galois.

3. Let K/\mathbf{Q} be an extension of degree n, where \mathbf{Q} is the field of rational numbers. Show that the number of subfields of K is at most $2^{n!}$. Suppose that $K = \mathbf{Q}(\alpha, \beta)$ and prove that there exists $m, 0 \le m \le 2^{n!}$ such that $K = \mathbf{Q}(\alpha + m\beta)$.