PRELIMINARY EXAMINATION IN ANALYSIS
 PART I - REAL ANALYSIS
 JANUARY 9, 2015, 1:00 PM - 2:30 PM

Please solve all of the following four problems.
(1) Let Z be a subset of \mathbb{R} with measure zero. Show that the set $A=\left\{x^{2} \mid x \in Z\right\}$ also has measure zero.
(2) Let $E \subset \mathbb{R}$ be a measurable set such that $0<|E|<\infty$. Prove that for every $\alpha \in(0,1)$ there is an open interval I such that

$$
|E \cap I| \geq \alpha|I| .
$$

(3) For any natural number n construct a function $f \in L^{1}\left(\mathbb{R}^{n}\right)$ such that for any ball $B \subset \mathbb{R}^{n}$, f is not essentially bounded on B.
(4) Let $g \in L^{1}\left(\mathbb{R}^{n}\right),\|g\|_{L^{1}\left(\mathbb{R}^{n}\right)}<1$. Prove that there is a unique $f \in L^{1}\left(\mathbb{R}^{n}\right)$ such that

$$
f(x)+(f * g)(x)=e^{-|x|^{2}}, \quad x \in \mathbb{R}^{n} \quad \text { a.e. }
$$

