Numerical Analysis Preliminary Exam

January 5, 2015

Part I

1. Consider $A=\left[\begin{array}{cc}-2 & 11 \\ -10 & 5\end{array}\right]$ and its Singular Value Decomposition (SVD).
(a) Find an SVD of A involving unitary matrices having only real entries and having minimal number of minus signs.
(b) Find an Eigenvalue decomposition of the matrix

$$
B=\left[\begin{array}{cc}
0 & A^{T} \\
A & 0
\end{array}\right]
$$

2. Consider the linear least squares problem

$$
\begin{equation*}
\min _{x}\|A x-b\|_{2} \tag{1}
\end{equation*}
$$

where $A \in R^{m \times n}$ with $m \geq n$.
(a) Derive the normal equations for solving (1).
(b) Show how to use $Q R$ decomposition and SVD (singular value decomposition) to solve (1).
(c) Suppose A does not have full column rank. Is the least squares solution unique? Characterize all solutions in terms of the SVD of A.
(d) Suppose A does have full column rank, but many of its singular values are small (for example, $m=100, n=50, \sigma_{1}=2, \sigma_{1}, \cdots, \sigma_{25}>1$ and $\left.\sigma_{26}, \ldots, \sigma_{50}<10^{-13}\right)$. How will you solve the least squares problem (1) in this case? Discuss.
3. Derive a numerical method with optimal computational efficiency for finding the minimum of $G: \mapsto \mathbb{R}^{m} \mapsto \mathbb{R}$ which is strictly convex and twice continuously differentiable. If G is quadratic and Newton's method is used, how many steps would be needed to convergence? Justify your answers.

