The University of Texas at Austin
Department of Mathematics

The Preliminary Examination in Probability Part I

Monday, Jan 12, 2015

Problem 1. Let X and Y be two square-integrable random variables, defined on the same probability space, such that

$$
\left(X\left(\omega^{\prime}\right)-X(\omega)\right)\left(Y\left(\omega^{\prime}\right)-Y(\omega)\right) \geq 0 \text { for all } \omega, \omega^{\prime} \in \Omega
$$

Show that $\operatorname{Cov}(X, Y) \geq 0$.

Problem 2. A probability measure μ on (the Borel subsets of) \mathbb{R} is said to be infinitely divisible, if, for each $n \in \mathbb{N}$, there exists a probability μ_{n} on \mathbb{R} such that $\mu=\mu_{n} * \cdots * \mu_{n}$ (n-fold convolution).
(1) Show that any $\mu \in \mathbb{R}$ and $\sigma>0$, the normal distribution, $N\left(\mu, \sigma^{2}\right)$ is infinitely divisible.
(2) Find another example of an infinitely divisible measure on \mathbb{R}.
(3) Find an example of a probability measure on \mathbb{R} which is not infinitely divisible. (Hint: The sum of two discrete, independent and nonconstant random variables takes at least 4 different values with positive probabilities.)
(Note: The set of all probability measures on \mathbb{R} admits the structure of (commutative) monoid with respect to the operation of convolution. Infinitely divisible measures are exactly those that admit an " n-th root" for each $n \in \mathbb{N}$.)

Problem 3. Given two independent simple symmetric random walks $\left\{\tilde{X}_{n}\right\}_{n \in \mathbb{N}_{0}}$ and $\left\{\tilde{Y}_{n}\right\}_{n \in \mathbb{N}_{0}}$, let $\left\{X_{n}\right\}_{n \in \mathbb{N}_{0}}$ denote $\left\{\tilde{X}_{n}\right\}_{n \in \mathbb{N}_{0}}$ stopped when it first hits the level 1, and let $\left\{Y_{n}\right\}_{n \in \mathbb{N}_{0}}$ be given by

$$
Y_{0}=0, Y_{n}=\sum_{k=1}^{n} 2^{-k}\left(\tilde{Y}_{k}-\tilde{Y}_{k-1}\right)
$$

Identify the distribution of $\liminf _{n}\left(X_{n}+Y_{n}\right)$ and show that the sequence $\left\{X_{n}+Y_{n}\right\}_{n \in \mathbb{N}_{0}}$ is not uniformly integrable.

