PRELIMINARY EXAMINATION IN ALGEBRAIC TOPOLOGY JANUARY 2015

Instructions:

- Attempt all three questions.
- Explain your arguments as clearly as possible.
- The exam is 90 minutes in duration.
- (1) Show that there does not exist a compact surface F (with boundary) with a connected 2-sheeted covering space \tilde{F} such that \tilde{F} has three boundary components and $H_1(\tilde{F}) \cong \mathbb{Z}^5$.

[Hint: You may quote the fact that if $p: \tilde{X} \to X$ is a 2-sheeted covering map, with \tilde{X} path-connected, $x_0 \in X$, and $\tilde{x}_0 \in p^{-1}(x_0)$, then $p_*(\pi_1(\tilde{X}, \tilde{x}_0))$ is the kernel of some non-trivial homomorphism $\pi_1(X, x_0) \to \mathbb{Z}/2$.]

(2) Recall that the mapping cylinder M_f of a map $f: X \to Y$ is the quotient space obtained from the disjoint union of $X \times I$ and Y by identifying (x, 1) with f(x) for all $x \in X$.

Recall also that the *double* of a space X along a subspace A is the quotient space obtained from the disjoint union of two copies of X by identifying the two copies of A via the identity map.

Let $f: S^1 \to S^1 \times S^1$ be the map $f(z) = (z^2, 1)$. (Here we regard S^1 as the set of complex numbers of absolute value 1.) Let V be the double of M_f along $S^1 \times \{0\} \subset S^1 \times I$. Compute the homology groups $H_*(V)$.

- (3) (a) State the Brouwer Fixed Point Theorem.
 - (b) Show that any $n \times n$ matrix with positive real entries has a positive real eigenvalue.