PRELIMINARY EXAMINATION IN ANALYSIS PART I - REAL ANALYSIS AUGUST 17, 2015, 1:00 PM - 2:30 PM

Please solve at least four of the five following problems.

(1) Let f and g be real valued measurable integrable functions on a measure space (X, μ) and let

$$F_t = \{ x \in X : f(x) > t \}, \ G_t = \{ x \in X : g(x) > t \}.$$

Prove that

$$\|f - g\|_1 = \int_{-\infty}^{\infty} \mu(F_t \bigtriangleup G_t) \ dt$$

where

$$F_t \triangle G_t = (F_t \setminus G_t) \cup (G_t \setminus F_t).$$

(2) Let f be a nondecreasing function on [0, 1]. You may assume that f is differentiable almost everywhere.

(a) Prove that

$$\int_0^1 f'(t) \, dt \le f(1) - f(0).$$

- (b) Let $\{f_n\}$ be a sequence of non-decreasing functions on [0, 1] such that $F(x) = \sum_{n=1}^{\infty} f_n(x)$ converges for $x \in [a, b]$. Prove that $F'(x) = \sum_{n=1}^{\infty} f'_n(x)$ almost-everywhere.
- (3) Find a non-empty closed set in $L^2([0,1])$ which does not contain an element of minimal norm.
- (4) Give an example of a sequence $\{f_h\}_{h\in\mathbb{N}}\subset L^1(\mathbb{R})$ such that $f_h\to 0$ a.e. on \mathbb{R} but f_h does not converge to 0 in $L^1_{loc}(\mathbb{R})$.
- (5) Let $f \in L^1(\mathbb{R})$ and φ_{ε} be a mollifier. This means $\varphi_{\varepsilon}(x) = \varepsilon^{-1}\varphi(x/\varepsilon)$ where $\varphi : \mathbb{R} \to \mathbb{R}$ is a function satisfying: $\varphi \ge 0$, the support of φ is compact and $\int \varphi = 1$. Let $f_{\varepsilon} = f \star \varphi_{\varepsilon}$ be the convolution. Show that

$$\int_{\mathbb{R}} \liminf_{\varepsilon \to 0} |f_{\varepsilon}| \le \int_{\mathbb{R}} |f| \, .$$