PRELIMINARY EXAMINATION IN ANALYSIS
 PART I - REAL ANALYSIS
 AUGUST 17, 2015, 1:00 PM - 2:30 PM

Please solve at least four of the five following problems.
(1) Let f and g be real valued measurable integrable functions on a measure space (X, μ) and let

$$
F_{t}=\{x \in X: f(x)>t\}, G_{t}=\{x \in X: g(x)>t\} .
$$

Prove that

$$
\|f-g\|_{1}=\int_{-\infty}^{\infty} \mu\left(F_{t} \triangle G_{t}\right) d t
$$

where

$$
F_{t} \Delta G_{t}=\left(F_{t} \backslash G_{t}\right) \cup\left(G_{t} \backslash F_{t}\right)
$$

(2) Let f be a nondecreasing function on $[0,1]$. You may assume that f is differentiable almost everywhere.
(a) Prove that

$$
\int_{0}^{1} f^{\prime}(t) d t \leq f(1)-f(0)
$$

(b) Let $\left\{f_{n}\right\}$ be a sequence of non-decreasing functions on $[0,1]$ such that $F(x)=\sum_{n=1}^{\infty} f_{n}(x)$ converges for $x \in[a, b]$. Prove that $F^{\prime}(x)=\sum_{n=1}^{\infty} f_{n}^{\prime}(x)$ almost-everywhere.
(3) Find a non-empty closed set in $L^{2}([0,1])$ which does not contain an element of minimal norm.
(4) Give an example of a sequence $\left\{f_{h}\right\}_{h \in \mathbb{N}} \subset L^{1}(\mathbb{R})$ such that $f_{h} \rightarrow 0$ a.e. on \mathbb{R} but f_{h} does not converge to 0 in $L_{\text {loc }}^{1}(\mathbb{R})$.
(5) Let $f \in L^{1}(\mathbb{R})$ and φ_{ε} be a mollifier. This means $\varphi_{\varepsilon}(x)=\varepsilon^{-1} \varphi(x / \varepsilon)$ where $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ is a function satisfying: $\varphi \geq 0$, the support of φ is compact and $\int \varphi=1$. Let $f_{\varepsilon}=f \star \varphi_{\varepsilon}$ be the convolution. Show that

$$
\int_{\mathbb{R}} \liminf _{\varepsilon \rightarrow 0}\left|f_{\varepsilon}\right| \leq \int_{\mathbb{R}}|f|
$$

