PRELIMINARY EXAMINATION IN ANALYSIS PART II - COMPLEX ANALYSIS AUGUST 17, 2015, 2:40 PM - 4:10 PM

Please solve all four of the following problems.

(1) Let U denote a bounded simply connected region in the complex plane and let $f: U \to U$ be an analytic function such that f(0) = 0, and |f'(0)| < 1. Let

$$f^{(n)}(z) = f \circ f \circ \dots \circ f(z)$$

be the function obtained by composing f *n*-times. Prove that $f^{(n)}(z) \to 0$ uniformly on compact subsets of U.

(2) Let f be a non-constant meromorphic function on the complex plane \mathbb{C} that obeys

$$f(z) = f(z + \sqrt{2}) = f(z + i\sqrt{2}).$$

Assume f has at most one pole in the closed disk $D = \{z : |z|1\}$.

- (a) Show that f has exactly one pole in D.
- (b) Show that this pole is not simple.
- (3) Let f be an entire non-constant function such that f(1-z) = 1 f(z) for all $z \in \mathbb{C}$. Show that $f(\mathbb{C}) = \mathbb{C}$.
- (4) Let \mathbb{D} be the open unit disc in the complex plane and μ the Lebesgue measure on \mathbb{D} . Let H be the subspace of $L^2(\mathbb{D}, \mu)$ consisting of holomorphic functions. Show that H is closed in $L^2(\mathbb{D}, \mu)$. Hint: prove that for every compact $K \subset \mathbb{D}$ there exists a constant $C_K > 0$ such that $\|f\|_K \|_{\infty} \leq C_K \|f\|_K \|_2$.