August 21, 2015, 10:00am - 11:30am

Work 3 of the following 4 problems.

- 1. Let Y be a finite dimensional subspace of a normed linear space X. Prove that Y is closed, and that there exists a continuous projection P from X onto Y. If Y is one-dimensional, describe how to construct such a projection.
- **2.** Let X be a real Banach space with dual space X' and duality pairing $\langle ., . \rangle$. Let $A, B : X \to X'$ be linear maps.
 - (a) Assuming $\langle Ax, x \rangle \ge 0$ for all $x \in X$, show that A is bounded.
 - (b) Assuming $\langle Bx, y \rangle = \langle By, x \rangle$ for all $x, y \in X$, show that B is bounded.
- **3.** Let $\Omega = [a, b]$ and $1 < p, q < \infty$ be given, with $\frac{1}{p} + \frac{1}{q} = 1$. Let $v \in L^q(\Omega)$. For every $u \in L^p(\Omega)$ define a function Au by setting

$$(Au)(t) = \int_{a}^{t} v(s)u(s) \, ds, \qquad \forall t \in \Omega.$$

- (a) Show that A maps $L^p(\Omega)$ into $L^p(\Omega)$ and is continuous.
- (b) Show that $A: L^p(\Omega) \to L^p(\Omega)$ is compact.
- **4.** Let X be a complex Hilbert space with inner product $\langle ., . \rangle$, and let $A : X \to X$ be a continuous linear map that satisfies $\langle Ax, x \rangle \ge 0$ for all $x \in X$. Show that
 - (a) $\operatorname{null}(A) = [\operatorname{range}(A)]^{\perp}$.
 - (b) I + tA is bijective for every t > 0.
 - (c) $\lim_{t\to\infty} (I + tA)^{-1}x = Px$ for all $x \in X$, where P is the orthogonal projection in X onto the null space null(A) of A.