Applied Mathematics Preliminary Exam, Part A

August 21, 2015, 10:00am - 11:30am

Work 3 of the following 4 problems.

1. Let Y be a finite dimensional subspace of a normed linear space X. Prove that Y is closed, and that there exists a continuous projection P from X onto Y. If Y is one-dimensional, describe how to construct such a projection.
2. Let X be a real Banach space with dual space X^{\prime} and duality pairing $\langle.,$.$\rangle . Let$ $A, B: X \rightarrow X^{\prime}$ be linear maps.
(a) Assuming $\langle A x, x\rangle \geq 0$ for all $x \in X$, show that A is bounded.
(b) Assuming $\langle B x, y\rangle=\langle B y, x\rangle$ for all $x, y \in X$, show that B is bounded.
3. Let $\Omega=[a, b]$ and $1<p, q<\infty$ be given, with $\frac{1}{p}+\frac{1}{q}=1$. Let $v \in \mathrm{~L}^{q}(\Omega)$. For every $u \in \mathrm{~L}^{p}(\Omega)$ define a function $A u$ by setting

$$
(A u)(t)=\int_{a}^{t} v(s) u(s) d s, \quad \forall t \in \Omega
$$

(a) Show that A maps $\mathrm{L}^{p}(\Omega)$ into $\mathrm{L}^{p}(\Omega)$ and is continuous.
(b) Show that $A: \mathrm{L}^{p}(\Omega) \rightarrow \mathrm{L}^{p}(\Omega)$ is compact.
4. Let X be a complex Hilbert space with inner product $\langle.,$.$\rangle , and let A: X \rightarrow X$ be a continuous linear map that satisfies $\langle A x, x\rangle \geq 0$ for all $x \in X$. Show that
(a) $\operatorname{null}(A)=[\operatorname{range}(A)]^{\perp}$.
(b) $\mathrm{I}+t A$ is bijective for every $t>0$.
(c) $\lim _{t \rightarrow \infty}(\mathrm{I}+t A)^{-1} x=P x$ for all $x \in X$, where P is the orthogonal projection in X onto the null space $\operatorname{null}(A)$ of A.

