Work all 3 of the following 3 problems.

1. Given $\alpha > 1$ and $\beta > 0$, consider the problem of finding a continuous function u on $\Omega = [0, 1]$ that satisfies the equation

$$u(t) = \alpha + \beta \int_0^t s \ln |u(s)| \, ds \,, \qquad \forall t \in \Omega.$$

Show that, if β is sufficiently small, then this equation possesses a unique solution $u \in U$ in some open neighborhood $U \subset C(\Omega)$ of the constant function $t \mapsto \alpha$.

- **2.** Let X and Y be normed linear spaces, and let $U \subset X$ be open. If $F : U \to Y$ is Gâteaux differentiable, and if the derivative $DF : U \to \mathcal{L}(X,Y)$ is continuous at $x \in U$, show that F is Fréchet differentiable at x.
- **3.** Let Ω be a domain in \mathbb{R}^n with smooth boundary $\partial\Omega$. Let A be a $n \times n$ matrix with components in $\mathcal{L}^{\infty}(\Omega)$. Let $c \in \mathcal{L}^{\infty}(\Omega)$ and $f \in \mathcal{L}^2(\Omega)$. Consider the boundary value problem

$$-\nabla \cdot A\nabla u + cu = f \quad \text{in } \Omega, \qquad u = 0 \quad \text{on } \partial\Omega. \tag{(\star)}$$

(All functions here are assumed to be real-valued.)

(a) Give the associated variational problem.

Assume now that A is symmetric and uniformly positive definite, and that c is uniformly positive. Define an energy functional $J : H_0^1(\Omega) \to \mathbb{R}$ by setting

$$J(u) = \frac{1}{2} \int_{\Omega} \left(\left| A^{1/2} \nabla u \right|^2 + c |u|^2 - 2fu \right), \qquad \forall u \in \mathcal{H}^1_0(\Omega)$$

- (b) Compute the derivative DJ(u).
- (c) Prove that for $u \in H_0^1(\Omega)$ the following are equivalent: (i) u is a weak solution of the boundary value problem (\star) , (ii) DJ(u) = 0, (iii) u minimizes J.