Applied Mathematics Preliminary Exam, Part B
 August 21, 2015, 11:40am - 1:10pm

Work all 3 of the following 3 problems.

1. Given $\alpha>1$ and $\beta>0$, consider the problem of finding a continuous function u on $\Omega=[0,1]$ that satisfies the equation

$$
u(t)=\alpha+\beta \int_{0}^{t} s \ln |u(s)| d s, \quad \forall t \in \Omega
$$

Show that, if β is sufficiently small, then this equation possesses a unique solution $u \in U$ in some open neighborhood $U \subset \mathrm{C}(\Omega)$ of the constant function $t \mapsto \alpha$.
2. Let X and Y be normed linear spaces, and let $U \subset X$ be open. If $F: U \rightarrow Y$ is Gâteaux differentiable, and if the derivative $D F: U \rightarrow \mathcal{L}(X, Y)$ is continuous at $x \in U$, show that F is Fréchet differentiable at x.
3. Let Ω be a domain in \mathbb{R}^{n} with smooth boundary $\partial \Omega$. Let A be a $n \times n$ matrix with components in $\mathrm{L}^{\infty}(\Omega)$. Let $c \in \mathrm{~L}^{\infty}(\Omega)$ and $f \in \mathrm{~L}^{2}(\Omega)$. Consider the boundary value problem

$$
-\nabla \cdot A \nabla u+c u=f \quad \text { in } \Omega, \quad u=0 \quad \text { on } \partial \Omega
$$

(All functions here are assumed to be real-valued.)
(a) Give the associated variational problem.

Assume now that A is symmetric and uniformly positive definite, and that c is uniformly positive. Define an energy functional $J: \mathrm{H}_{0}^{1}(\Omega) \rightarrow \mathbb{R}$ by setting

$$
J(u)=\frac{1}{2} \int_{\Omega}\left(\left|A^{1 / 2} \nabla u\right|^{2}+c|u|^{2}-2 f u\right), \quad \forall u \in \mathrm{H}_{0}^{1}(\Omega)
$$

(b) Compute the derivative $D J(u)$.
(c) Prove that for $u \in \mathrm{H}_{0}^{1}(\Omega)$ the following are equivalent: (i) u is a weak solution of the boundary value problem (\star), (ii) $D J(u)=0$, (iii) u minimizes J.

