Preliminary exam: Numerical Analysis, Part B, January 13, 2016

Name: \qquad EID: \qquad

1. Consider the ordinary differential equation initial value problem,

$$
\begin{aligned}
& x^{\prime}(t)=f(x(t)), \quad t>0, \\
& x(0)=x_{0}
\end{aligned}
$$

and the corresponding two stage Runge-Kutta approximation

$$
\begin{aligned}
& x_{n+1}=x_{n}+\alpha_{1} h k_{1}+\alpha_{2} h k_{2}, \\
& k_{1}=f\left(x_{n}\right), k_{2}=f\left(x_{n}+\beta h k_{1}\right), \\
& x_{n} \approx x\left(t_{n}\right), t_{n}=n h
\end{aligned}
$$

(a) For which α_{1}, α_{2} and β will the method converge as $h \rightarrow 0$?
(b) For which α_{1}, α_{2} and β is the method of second order?
(c) Can a method on this form be A-stable?

Motivate your answers.
2. The following elliptic PDE is given,

$$
\begin{aligned}
& -\nabla \cdot a(x, y) \nabla u+b \cdot \nabla u+c u=f(x, y), \quad 0<x<1,0<y<1,0<a \leq a(x, y) \leq A \\
& u=d_{1}(x, y), x=0 \text { and } x=1,0<y<1, \\
& u_{y}=d_{2}(x, y), y=0 \text { and } y=1,0<x<1,
\end{aligned}
$$

(a) Rewrite the equation on weak form.
(b) Show that the relevant bilinear form is continuous and coersive and that the relevant linear form is continuous when $d_{1}=d_{2}=0$ for appropriate values of the vector b and constant $c>0$. Give the fundamental error estimate for a finite element approximation based on the weak form in terms of the best approximation in the space of basis function.
(c) Modify the boundary conditions to be appropriate for $a(x . y)=0$ and describe a discontinuous Galerkin formulation for this case.
3. A hyperbolic system of nonlinear scalar conservation law has the form,

$$
\begin{aligned}
& u(x, t)_{t}+f_{1}(u(x, t))_{x}+g_{1}(u(x, t), v(x, t))=0 \\
& v(x, t)_{t}+f_{2}(v(x, t))_{x}+g_{2}(u(x, t), v(x, t))=0
\end{aligned}
$$

(a) Recommend suitable initial and boundary conditions for the hyperbolic system, ($t>0, a<x<b$).
(b) Devise an upwind finite difference method for the equation above when $f_{1}(u)>0, f_{2}(v)<0$ and show that the method is consistent and for, $g_{1}=g_{2}=0$, on conservation form.
(c) Use von Neumann analysis when, $f_{1}(u)=a_{1} u\left(a_{1}>0\right), f_{2}(u)=a_{2} u\left(a_{1}<0\right)$, to determine necessary and sufficient conditions for the spatial and temporal step sizes, $\Delta x, \Delta t$, to guarantee L_{2} stability.

