Preliminary Examination: Algebraic topology. August 2017

Instructions: Answer all four questions

Time limit: 90 minutes.

1. Let K be a smoothly embedded circle in \mathbb{R}^{3} (i.e. a knot). Use a Mayer-Vietoris sequence to calculate the homology groups of $X=\mathbb{R}^{3} \backslash K$ with \mathbb{Z} coefficients. (The result does not depend on K).
2. Let $X=S^{1} \vee S^{1}$ be the wedge of two circles. Recall that $\pi_{1}(X)=\langle a, b\rangle$ is free, generated by two loops, one going around each circle.
(a): Draw a picture of a three-fold covering space $p: \widetilde{X} \rightarrow X$ which is not normal. Write down generators for the corresponding subgroup H of $\pi_{1}(X)$. What is the size of a minimal generating set for H ?
(b): Draw a picture of a three-fold covering space $q: \widetilde{Y} \rightarrow X$ which is normal. Describe the action of the deck transformation group $G(\widetilde{Y})$ in your picture.
3. Let X be the identification space obtained from a cube $[0,1] \times[0,1] \times[0,1]$ by identifying opposite faces in pairs with a quarter twist in the positive direction. Let Y denote the image of $[0,1] \times[0,1] \times\{0\}$ in X.
(a): Write down presentations for $\pi_{1}\left(X, x_{0}\right)$ and $\pi_{1}\left(Y, x_{0}\right)$, where x_{0} is one of the vertices. Do not simplify.
(b): Compute the homology groups $H_{1}(X, \mathbb{Z})$ and $H_{1}(Y, \mathbb{Z})$.
(c): Does X retract onto Y ?
4. Let M_{g} denote the closed orientable surface of genus g. For what values of n does there exist a connected normal covering space of M_{g} whose deck transformation group is isomorphic to \mathbb{Z}^{n} ?
