PRELIMINARY EXAMINATION IN ANALYSIS Part I, Real Analysis

January 10, 2017

1. For $f \in L^1(\mathbb{R})$ denote by Mf be the restricted maximal function defined by

$$(Mf)(x) = \sup_{0 < t < 1} \frac{1}{2t} \int_{x-t}^{x+t} |f(z)| \, dz \, .$$

Show that $M(f * g) \leq (Mf) * Mg$ for all $f, g \in L^1(\mathbb{R})$.

- **2.** Let $1 \le p, q \le \infty$ with $\frac{1}{p} + \frac{1}{q} = 1$. Show that if $f \in L^p(\mathbb{R}^n)$ and $g \in L^q(\mathbb{R}^n)$ then f * g is bounded and continuous on \mathbb{R}^n .
- **3.** Let *B* be the closed unit ball in \mathbb{R}^n , and let f_1, f_2, f_3, \ldots be nonnegative integrable functions on *B*. Assume that
 - (i) $f_k \to f$ almost everywhere.
 - (ii) For every $\varepsilon > 0$ there exists M > 0 such that

$$\int_{\{x \in B: f_k(x) > M\}} f_k(x) \, dx < \varepsilon, \qquad k = 1, 2, 3, \dots$$

Show that $f_k \to f$ in $L^1(B)$.

4. Let f, f_1, f_2, \ldots be increasing functions on [a, b]. If $\sum_k f_k$ converges pointwise to f on [a, b], show that $\sum_k f'_k$ converges to f' almost everywhere on [a, b].