PRELIMINARY EXAMINATION IN ANALYSIS
 Part I, Real Analysis

January 10, 2017

1. For $f \in \mathrm{~L}^{1}(\mathbb{R})$ denote by $M f$ be the restricted maximal function defined by

$$
(M f)(x)=\sup _{0<t<1} \frac{1}{2 t} \int_{x-t}^{x+t}|f(z)| d z
$$

Show that $M(f * g) \leq(M f) * M g$ for all $f, g \in \mathrm{~L}^{1}(\mathbb{R})$.
2. Let $1 \leq p, q \leq \infty$ with $\frac{1}{p}+\frac{1}{q}=1$. Show that if $f \in \mathrm{~L}^{p}\left(\mathbb{R}^{n}\right)$ and $g \in \mathrm{~L}^{q}\left(\mathbb{R}^{n}\right)$ then $f * g$ is bounded and continuous on \mathbb{R}^{n}.
3. Let B be the closed unit ball in \mathbb{R}^{n}, and let $f_{1}, f_{2}, f_{3}, \ldots$ be nonnegative integrable functions on B. Assume that
(i) $f_{k} \rightarrow f$ almost everywhere.
(ii) For every $\varepsilon>0$ there exists $M>0$ such that

$$
\int_{\left.: f_{k}(x)>M\right\}} f_{k}(x) d x<\varepsilon, \quad k=1,2,3, \ldots
$$

Show that $f_{k} \rightarrow f$ in $\mathrm{L}^{1}(B)$.
4. Let f, f_{1}, f_{2}, \ldots be increasing functions on $[a, b]$. If $\sum_{k} f_{k}$ converges pointwise to f on $[a, b]$, show that $\sum_{k} f_{k}^{\prime}$ converges to f^{\prime} almost everywhere on $[a, b]$.

