PRELIMINARY EXAMINATION: APPLIED MATHEMATICS - Part I

January 13, 2017, 1:00-2:30

Work all 3 of the following 3 problems.

1. Let H be a Hilbert space and $P_{j}: H \rightarrow M_{j}$ be an orthogonal projection onto $M_{j}, j=1,2$. Let $N_{j}=N\left(P_{j}\right)$ be the nullspace of P_{j}.
(a) Show that $\left\|P_{j}\right\| \leq 1$ and $P_{j} \geq 0$.
(b) Show that the following are equivalent.
i. $P_{2} P_{1}=P_{1} P_{2}=P_{1}$
ii. $\left\|P_{1} x\right\| \leq\left\|P_{2} x\right\|$ for all $x \in H$
iii. $P_{1} \leq P_{2}$
iv. $N_{1} \supset N_{2}$
v. $M_{1} \subset M_{2}$
[Hint: Use the order i $\Longrightarrow \mathrm{ii} \Longrightarrow$ iii \Longrightarrow iv $\Longrightarrow \mathrm{v} \Longrightarrow$ i.]
2. Let X and Y be Banach spaces. Let $A: X \rightarrow X^{*}, B: Y \rightarrow X^{*}$, and $C: Y \rightarrow Y^{*}$ be bounded linear operators. Suppose that A maps onto X^{*} and C maps onto Y^{*}, and that there are constants $\alpha>0$ and $\gamma>0$ such that

$$
A x(x) \geq \alpha\|x\|_{X}^{2} \quad \text { and } \quad C y(y) \geq \gamma\|y\|_{Y}^{2} \quad \forall x \in X, y \in Y
$$

Given $f \in X^{*}$ and $g \in Y^{*}$, consider the problem

$$
\begin{aligned}
& A x-B y=f \\
& B^{*} x+C y=g
\end{aligned}
$$

(a) The notation $B^{*} x$ is not quite correct. Explain its obvious meaning.
(b) Show that A has an inverse and that $\left\|A^{-1}\right\| \leq 1 / \alpha$.
(c) Prove that if there exists a solution $(x, y) \in X \times Y$ to the problem, then it is unique.
[Hint: Show that $A x(x)+C y(y)=f(x)+g(y)$.]
(d) If $\|B\|<\sqrt{\alpha \gamma}$, show that there is a solution to the problem.
3. Let $I=[0,1]$ and $A: L^{2}(I) \rightarrow L^{2}(I)$ be defined by

$$
A f(x)=\int_{0}^{1} f(y) \sin \left(\frac{x+y}{2}\right) d y
$$

(a) Show that A is compact and self-adjoint.
(b) Show that $\|A\|<1$.
(c) Show that the smallest eigenvalue of A is strictly negative. [Hint: Rayleigh Quotient.]

