PRELIMINARY EXAMINATION: APPLIED MATHEMATICS—Part I

January 13, 2017, 1:00-2:30

Work all 3 of the following 3 problems.

1. Let *H* be a Hilbert space and $P_j : H \to M_j$ be an orthogonal projection onto M_j , j = 1, 2. Let $N_j = N(P_j)$ be the nullspace of P_j .

(a) Show that $||P_j|| \leq 1$ and $P_j \geq 0$.

(b) Show that the following are equivalent.

i. $P_2P_1 = P_1P_2 = P_1$ ii. $||P_1x|| \le ||P_2x||$ for all $x \in H$ iii. $P_1 \le P_2$ iv. $N_1 \supset N_2$ v. $M_1 \subset M_2$

[Hint: Use the order $i \implies ii \implies iii \implies iv \implies v \implies i.$]

2. Let X and Y be Banach spaces. Let $A : X \to X^*$, $B : Y \to X^*$, and $C : Y \to Y^*$ be bounded linear operators. Suppose that A maps onto X^* and C maps onto Y^* , and that there are constants $\alpha > 0$ and $\gamma > 0$ such that

$$Ax(x) \ge \alpha \|x\|_X^2$$
 and $Cy(y) \ge \gamma \|y\|_Y^2$ $\forall x \in X, y \in Y.$

Given $f \in X^*$ and $g \in Y^*$, consider the problem

$$Ax - By = f,$$

$$B^*x + Cy = g.$$

- (a) The notation B^*x is not quite correct. Explain its obvious meaning.
- (b) Show that A has an inverse and that $||A^{-1}|| \leq 1/\alpha$.

(c) Prove that if there exists a solution $(x, y) \in X \times Y$ to the problem, then it is unique. [Hint: Show that Ax(x) + Cy(y) = f(x) + g(y).]

- (d) If $||B|| < \sqrt{\alpha\gamma}$, show that there is a solution to the problem.
- **3.** Let I = [0, 1] and $A : L^2(I) \to L^2(I)$ be defined by

$$Af(x) = \int_0^1 f(y) \sin\left(\frac{x+y}{2}\right) dy.$$

- (a) Show that A is compact and self-adjoint.
- (b) Show that ||A|| < 1.
- (c) Show that the smallest eigenvalue of A is strictly negative. [Hint: Rayleigh Quotient.]