The University of Texas at Austin
 Department of Mathematics

The Preliminary Examination in Probability Part I

Thursday, January 12th, 2017

Problem 1. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, and let \mathbb{L}^{0} be the collection of all \mathbb{P}-a.s.-equivalence classes of \mathbb{R}-valued random variables. Show that there exists a metric $d: \mathbb{L}^{0} \times \mathbb{L}^{0} \rightarrow[0, \infty)$ such that $\left(\mathbb{L}^{0}, d\right)$ is a complete metric space, and a sequence $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ in \mathbb{L}^{0} converges under d if and only if it converges in probability.

Problem 2. Let $\left\{\mu_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of probability measures on \mathbb{R} such that $\mu_{n} \xrightarrow{w} \mu$, for some probability measure μ on \mathbb{R} and

$$
\sup _{n \in \mathbb{N}}\left|\varphi_{\mu_{n}}\right| \in \mathbb{L}^{1}(\lambda)
$$

where λ is the Lebesgue measure on \mathbb{R} and $\varphi_{\mu_{n}}$ is the characteristic function of μ_{n}. Show that $\mu \ll \lambda$ and $\mu_{n} \ll \lambda$ for each $n \in \mathbb{N}$, and $\frac{d \mu_{n}}{d \lambda} \rightarrow \frac{d \mu}{d \lambda}$, λ-a.e.

Problem 3. Let ξ_{1}, ξ_{2}, \ldots. be a sequence of independent random variables such that

$$
\mathbb{P}\left(\xi_{n}=\frac{1}{2^{n}}\right)=\mathbb{P}\left(\xi_{n}=-\frac{1}{2^{n}}\right)=\frac{1}{2}, \quad n=1,2, \ldots
$$

Denote by

$$
X_{n}=\xi_{1}+\ldots \xi_{n}, \quad n=1,2, \ldots
$$

Show that there exist a random variable X_{∞} such that X_{n} converges a.s. and in L^{2} to X_{∞}. Compute the law of the random variable X_{∞}. Is the convergence also an L^{∞} convergence?

