The University of Texas at Austin Department of Mathematics

The Preliminary Examination in Probability Part I

Thursday, January 12th, 2017

Problem 1. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, and let \mathbb{L}^0 be the collection of all \mathbb{P} -a.s.-equivalence classes of \mathbb{R} -valued random variables. Show that there exists a metric $d : \mathbb{L}^0 \times \mathbb{L}^0 \to [0, \infty)$ such that (\mathbb{L}^0, d) is a <u>complete</u> metric space, and a sequence $\{X_n\}_{n \in \mathbb{N}}$ in \mathbb{L}^0 converges under d if and only if it converges in probability.

Problem 2. Let $\{\mu_n\}_{n\in\mathbb{N}}$ be a sequence of probability measures on \mathbb{R} such that $\mu_n \xrightarrow{w} \mu$, for some probability measure μ on \mathbb{R} and

$$\sup_{n\in\mathbb{N}}|\varphi_{\mu_n}|\in\mathbb{L}^1(\lambda),$$

where λ is the Lebesgue measure on \mathbb{R} and φ_{μ_n} is the characteristic function of μ_n . Show that $\mu \ll \lambda$ and $\mu_n \ll \lambda$ for each $n \in \mathbb{N}$, and $\frac{d\mu_n}{d\lambda} \to \frac{d\mu}{d\lambda}$, λ -a.e.

Problem 3. Let ξ_1, ξ_2, \ldots be a sequence of independent random variables such that

$$\mathbb{P}\left(\xi_n = \frac{1}{2^n}\right) = \mathbb{P}\left(\xi_n = -\frac{1}{2^n}\right) = \frac{1}{2}, \quad n = 1, 2, \dots$$

Denote by

$$X_n = \xi_1 + \dots + \xi_n, \quad n = 1, 2, \dots$$

Show that there exist a random variable X_{∞} such that X_n converges a.s. and in L^2 to X_{∞} . Compute the law of the random variable X_{∞} . Is the convergence also an L^{∞} convergence?