1. Questions

(1) Classify all finitely generated abelian groups such that the group of automorphisms is finite.
 (b) What is \(\text{Aut}(\mathbb{Z} \times C_p \times C_q) \), for \(p \) and \(q \) relatively prime?

(2) (a) Prove that any group of order \(p^2 \) is abelian.
 (b) Classify the groups of order \(p^2 \).
 (c) Classify the non-abelian groups of order 8.

(3) Suppose that \(R \) is a commutative ring with an ideal \(I \subset R \) such that \(I^2 = I \).
 Show that \(R \cong I \oplus \tilde{R} \), where \(\tilde{R} \) is another ideal.

(4) Let \(G \) be a finite group and \(H \) a subgroup of finite index. Suppose that for any \(x, y \in G \setminus H \) we have \(xH \cap Hy \neq \emptyset \). What can you say about the order of \(G \)? (Hint: let \(G \) act on \(G/H \times G/H \).)

(5) Let \(R \) be a ring.
 (a) Show that a finitely presented \(R \)-module \(M \) is finitely generated. Recall that a module \(M \) is finitely presented if there exists an exact sequence
 \[R^n \to R^m \to M \to 0. \]
 (b) Show that given a short exact sequence of \(R \)-modules
 \[0 \to P \to Q \to M \to 0 \]
 such that \(M \) is finitely presented and \(Q \) is finitely generated, then \(P \) is finitely generated.
 (c) Assume that \(R \) is Noetherian. Show that a finitely generated \(R \)-module \(M \) is finitely presented.
 (d) Give an example of a ring \(R \) and a module \(M \) which is finitely generated but not finitely presented.