Preliminary Examination in Algebra, Part II January 2019

- (1) Let α be the real, positive fourth root of 5. Set $F = \mathbb{Q}(\alpha)$ and let E be the normal closure of F.
 - (a) Determine the Galois group $Gal(E/\mathbb{Q})$ as an abstract group.
 - (b) Prove that F is not a subfield of any cyclotomic extension of \mathbb{Q} .
 - (c) Describe, in terms of α and $i := \sqrt{-1}$, all subfields of *E* which are normal over \mathbb{Q} .
- (2) Let k be a finite field.
 - (a) Describe, without proof, the structure of the multiplicative group k^{\times} .
 - (b) Prove that every element of k is a sum of two squares.
- (3) Let *p* be a prime, and \mathbb{F}_p the field with *p* elements. Let *x* and *y* be algebraically independent indeterminates over \mathbb{F}_p . Consider the field $L = \mathbb{F}_p(x, y)$ and its subfield $K = \mathbb{F}_p(x^p, y^p)$.
 - (a) Determine the separable and inseparable degrees of L/K.
 - (b) Prove that L/K is not a simple extension.