PRELIMINARY EXAMINATION IN ANALYSIS Part II, Complex Analysis

January 15, 2019

Work 4 of the following 5 problems.

1. Given $z \in \mathbb{C}$ and a smooth closed curve γ in $\mathbb{C} \setminus \{z\}$, denote by $n(\gamma, z)$ the index or winding number of γ about z. If γ admits a representation

$$\gamma(t) = \sum_{k=-N}^{N} c_k e^{ikt}, \qquad t \in [0, 2\pi],$$

with c_{-N} and c_N not both zero, show that $-N \leq n(\gamma, z) \leq N$.

- **2.** Evaluate the integral $\int_{-\infty}^{\infty} \frac{\sin \pi x}{x^2 x} dx$. Explain all steps carefully.
- **3.** Assume that f is meromorphic on \mathbb{C} and bounded outside some compact set. Show that f is a rational function.
- 4. Prove that

$$\frac{d}{dz}\left(\frac{\pi\sin(z)}{\sin(\pi z)}\right) = \sum_{n\in\mathbb{Z}}\frac{(-1)^{n+1}\sin(n)}{(z-n)^2}$$

for all $z \in \mathbb{C} \setminus \mathbb{Z}$, with the right-hand side converging uniformly on every compact subset of $\mathbb{C} \setminus \mathbb{Z}$.

5. Determine all analytic functions $f: H \to \mathbb{C}$ on the half-plane $H = \{z \in \mathbb{C} : \operatorname{Re} z > 0\}$ that satisfy $f(\sqrt{n}) = n$ and $|f^{(n)}(1)| \leq 3$ for all positive integers n.