PRELIMINARY EXAMINATION IN ANALYSIS
 Part II, Complex Analysis

January 15, 2019

Work 4 of the following 5 problems.

1. Given $z \in \mathbb{C}$ and a smooth closed curve γ in $\mathbb{C} \backslash\{z\}$, denote by $n(\gamma, z)$ the index or winding number of γ about z. If γ admits a representation

$$
\gamma(t)=\sum_{k=-N}^{N} c_{k} e^{i k t}, \quad t \in[0,2 \pi]
$$

with c_{-N} and c_{N} not both zero, show that $-N \leq n(\gamma, z) \leq N$.
2. Evaluate the integral $\int_{-\infty}^{\infty} \frac{\sin \pi x}{x^{2}-x} d x$. Explain all steps carefully.
3. Assume that f is meromorphic on \mathbb{C} and bounded outside some compact set. Show that f is a rational function.
4. Prove that

$$
\frac{d}{d z}\left(\frac{\pi \sin (z)}{\sin (\pi z)}\right)=\sum_{n \in \mathbb{Z}} \frac{(-1)^{n+1} \sin (n)}{(z-n)^{2}}
$$

for all $z \in \mathbb{C} \backslash \mathbb{Z}$, with the right-hand side converging uniformly on every compact subset of $\mathbb{C} \backslash \mathbb{Z}$.
5. Determine all analytic functions $f: H \rightarrow \mathbb{C}$ on the half-plane $H=\{z \in \mathbb{C}: \operatorname{Re} z>0\}$ that satisfy $f(\sqrt{n})=n$ and $\left|f^{(n)}(1)\right| \leq 3$ for all positive integers n.

