The University of Texas at Austin Department of Mathematics

The Preliminary Examination in Probability Part I

Thursday, Jan 17, 2019

Part I

Problem 1. Consider a sequence of random variables $\{X_n\}_{n\in\mathbb{N}}$ in \mathbb{L}^1 and a C^2 function $\varphi : \mathbb{R} \to \mathbb{R}$ with the property that $\varphi''(x) \ge \varepsilon > 0$ for all x. Suppose that

$$\mathbb{E}[X_n] \to \mu \in \mathbb{R} \text{ and } \mathbb{E}[\varphi(X_n)] \to \varphi(\mu).$$

Show that $X_n \to \mu$ in probability.

Problem 2. Fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and on it a random variable N with the unit Poisson distribution:

$$\mathbb{P}[N=n] = (n!e)^{-1} \text{ for } n \in \mathbb{N} \cup \{0\}.$$

- (1) Let $\{Z_n\}_{n\in\mathbb{N}\cup\{0\}}$ be a sequence of random variables independent of N, with characteristic functions $\varphi_n = \varphi_{Z_n}$. Express the characteristic function of the random variable Z_N , given by $Z_N(\omega) = Z_{N(\omega)}(\omega)$ for $\omega \in \Omega$, in terms of the functions $\{\varphi_n\}_{n\in\mathbb{N}}$.
- (2) Let $\{X_n\}_{n\in\mathbb{N}}$ be an iid sequence independent of N, with the (common) characteristic function φ . Show how to construct a random variable Y whose characteristic function is $e^{\varphi^{-1}}$, from $\{X_n\}_{n\in\mathbb{N}}$ and N.

Problem 3. Let Z_1 and Z_2 be independent standard normals. Find the conditional density of $e^{Z_1-Z_2}$, given $\sigma(e^{Z_1+2Z_2})$?