The University of Texas at Austin

Department of Mathematics

The Preliminary Examination in Probability
 Part I

Thursday, Jan 17, 2019

Part I

Problem 1. Consider a sequence of random variables $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ in \mathbb{L}^{1} and a C^{2} function $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ with the property that $\varphi^{\prime \prime}(x) \geq \varepsilon>0$ for all x. Suppose that

$$
\mathbb{E}\left[X_{n}\right] \rightarrow \mu \in \mathbb{R} \text { and } \mathbb{E}\left[\varphi\left(X_{n}\right)\right] \rightarrow \varphi(\mu)
$$

Show that $X_{n} \rightarrow \mu$ in probability.
Problem 2. Fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and on it a random variable N with the unit Poisson distribution:

$$
\mathbb{P}[N=n]=(n!e)^{-1} \text { for } n \in \mathbb{N} \cup\{0\}
$$

(1) Let $\left\{Z_{n}\right\}_{n \in \mathbb{N} \cup\{0\}}$ be a sequence of random variables independent of N, with characteristic functions $\varphi_{n}=\varphi_{Z_{n}}$. Express the characteristic function of the random variable Z_{N}, given by $Z_{N}(\omega)=Z_{N(\omega)}(\omega)$ for $\omega \in \Omega$, in terms of the functions $\left\{\varphi_{n}\right\}_{n \in \mathbb{N}}$.
(2) Let $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ be an iid sequence independent of N, with the (common) characteristic function φ. Show how to construct a random variable Y whose characteristic function is $e^{\varphi-1}$, from $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ and N.

Problem 3. Let Z_{1} and Z_{2} be independent standard normals. Find the conditional density of $e^{Z_{1}-Z_{2}}$, given $\sigma\left(e^{Z_{1}+2 Z_{2}}\right)$?

