The University of Texas at Austin
Department of Mathematics

The Preliminary Examination in Probability Part II

Thursday, January 17th, 2019

Problem 1. Let W be a one-dimensional standard Brownian motion. Let μ, σ be constant real numbers and x be an initial value. Solve in closed form the equation

$$
\left\{\begin{array}{l}
d X_{t}=\mu X_{t} d t+\sigma X_{t} d W_{t} \\
X_{0}=x
\end{array}\right.
$$

Problem 2. Let W be a standard one-dimensional Brownian motion and M be its' running maximum process, i.e.

$$
M_{t}=\max _{0 \leq s \leq t} W_{s}, \quad 0 \leq t<\infty
$$

Consider a two-times continuously differentiable function f

$$
f:\{(x, m): m \geq 0,-\infty<x \leq m\} \rightarrow \mathbb{R}
$$

Find a necessary and sufficient condition so that the process Y defined by

$$
Y_{t}=f\left(W_{t}, M_{t}\right), 0 \leq t<\infty,
$$

is a local martingale.
Problem 3. Consider a finite time horizon T and a RCLL sub-martingale $\left(M_{t}\right)_{0 \leq t \leq T}$ on the filtered probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with filtration $\left(\mathcal{F}_{t}\right)_{0 \leq t \leq T}$. Consider the optimization problem of finding the stopping time τ that maximizes the expected value of M at the (random) time τ, namely the problem

$$
\sup _{\tau \text { stopping time }} \mathbb{E}\left[M_{\tau}\right] .
$$

Find the optimizer τ^{*}.

