Preliminary exam in Differential Topology

UNIVERSITY OF TEXAS, DEPARTMENT OF MATHEMATICS AUGUST 2019

Attempt all three questions.

Question 1

- (a) Prove that any compact manifold M embeds into \mathbb{R}^N , for some N.
- (b) For $v \in S^{N-1}$, let $p_v \colon \mathbb{R}^N \to v^{\perp} \subset \mathbb{R}^N$ be orthogonal projection away from v, i.e., $p_v(x) = x (x \cdot v)v$. Suppose that $M \subset \mathbb{R}^N$ is an *n*-dimensional submanifold. Using the standard norm on \mathbb{R}^N , define

$$S(TM) = \{(x, u) \in M \times T_x M : ||u|| = 1\},$$

$$\pi \colon S(TM) \to S^{N-1}, \quad (x, u) \mapsto u,$$

$$\sigma \colon \{(x, y) \in M \times M : x \neq y\} \to S^{N-1}, \quad \sigma(x, y) = \frac{x - y}{||x - y||}.$$

Prove that $p_v|_M \colon M \to v^{\perp}$ is an injective immersion if and only if v does not lie in $\operatorname{im} \sigma \cup \operatorname{im} \pi$.

(c) Prove that any compact *n*-manifold *M* embeds into \mathbb{R}^{2n+1} .

Question 2

Let $\beta \in \Omega_c^k(\mathbb{R}^n)$ be a differential k-form of compact support on \mathbb{R}^n , where n > 0 and k > 0. Prove that the following are equivalent:

- (i) There exists a compactly supported (k-1)-form $\alpha \in \Omega_c^{k-1}(\mathbb{R}^n)$ with $d\alpha = \beta$.
- (ii) Either $k \neq n$, or k = n and $\int_{\mathbb{R}^n} \beta = 0$.

[*Hint*: Extend β to S^n .]

Question 3

For *n* a positive integer, let $G = GL_n(\mathbb{C})$ be the group of invertible $n \times n$ complex matrices, regarded as a manifold. Let $H = \{g \in G : \det g \in \mathbb{R}\}$. Let $SL_n(\mathbb{C})$ be the special linear group and U(n) the unitary group.

- (i) Prove that H, $SL_n(\mathbb{C})$ and U(n) are submanifolds of G.
- (ii) Determine which of the following intersections of submanifolds are transverse:
 - (a) $U(n) \cap SL_n(\mathbb{C})$.
 - (b) $U(n) \cap H$.