On the Boltzmann limit for a Fermi gas in a random medium with dynamical Hartree-Fock interactions

Thomas Chen

Department of Mathematics University of Texas at Austin

Classical and Random Dynamics in Mathematical Physics

University of Texas at Austin, 2010

MOTIVATING PROBLEM

Extremely difficult: Interacting Fermi gas on $\Lambda_L := [-L, L]^d \cap \mathbb{Z}^d$

$$H_{\lambda} := \int dp \, E(p) \, n_p \, + \, \lambda \sum_{x,y \in \Lambda_L} \, n_x \, v(x-y) \, n_y \, .$$

Conjecture: Let $t = \frac{T}{\lambda^2}$, and ρ_0 free Gibbs state. Then,

$$F_T(p) := \lim_{\lambda \to 0} \lim_{L \to \infty} \rho_0(e^{iT/\lambda^2 H_\lambda} n_p e^{-iT/\lambda^2 H_\lambda})$$

exists and satisfies the Boltzmann-Uhlenbeck-Uehling equation $\partial_T F_T(p)$

$$= -4\pi \int dp_1 \, dp_2 \, dq_1 \, dq_2 \, \delta(p-p_1) \left| \hat{v}(p_1-q_1) - \hat{v}(p_1-q_2) \right|^2$$

$$\delta(p_1+p_2-q_1-q_2) \, \delta(E(p_1)+E(p_2)-E(q_1)-E(q_2))$$

$$\left[F_T(p_1)F_T(p_2)\widetilde{F}_T(q_1)\widetilde{F}_T(q_2) - F_T(q_1)F_T(q_2)\widetilde{F}_T(p_1)\widetilde{F}_T(p_2) \right],$$

where $\widetilde{F}_T(p) := 1 - F_T(p).$

Some work towards Boltzmann-Uhlenbeck-Uehling limit from interacting Fermi gas.

- Benedetto, Castella, Esposito, Pulvirenti [04]
 (∃ subseries in Feynman graph expansion yielding BUU. No control on errors)
- Hugenholtz [83] (physical argumentation motivating BUU limit)
- Ho-Landau [97] (proof to order $O(\lambda^2)$)
- Erdös-Salmhofer-Yau [04] (quasifreeness of correlations implies BUU)
- Spohn [06] (survey article)
- C-<u>Sasaki</u>, '08

(ok to order $O(\lambda^3)$, probably ok to $O(\lambda^4)$, unpublished)

QUANTUM DYNAMICS OF FERMION GASES IN RANDOM MEDIA

Consider electron gas in a medium containing randomly distributed impurities (e.g. semiconductor).

Another interpretation: Randomness \sim simplification of particle interaction with all other fermions in BUU problem.

Question:

- How do the Pauli principle and manybody interactions modify the transport properties ?
- Dynamics of the momentum distribution ?

In this talk:

- Joint with Itaru Sasaki (Shinshu U.) [JSP, 08]: Ideal Fermi gas in random medium.
- Joint work with Igor Rodnianski (Princeton): Mean field interacting Fermi gas in random medium.

Prove that kinetic scaling limit of momentum distribution function is determined by solution of a Boltzmann equation.

Related Works

(Derivation of dynamical Hartree-Fock equations)

- Bardos-Ducomet-Golse-Gottlieb-Mauser, [07].
- Bove-Da Prato-Fano [76]

BASICS

Box $\Lambda_L \subset \mathbb{Z}^d$ of size $L \gg 1$, dual lattice $\Lambda_L^* = \Lambda_L / L \subset \mathbb{T}^d$. Hilbert space of Fermi field $\mathfrak{F} = \bigoplus_{n \ge 0} \mathfrak{F}_n$ \mathfrak{F}_n = completely antisymmetric ℓ^2 -functions in n variables. Creation operators $a_p^+ : \mathfrak{F}_n \to \mathfrak{F}_{n+1}$ and annihilation operators $a_q : \mathfrak{F}_n \to \mathfrak{F}_{n-1}$, satisfying canonical anticommutation relations

$$a_p^+ a_q + a_q a_p^+ = \delta(p-q) := \begin{cases} L^d & \text{if } p = q \\ 0 & \text{otherwise.} \end{cases}$$

Remark: The operators

$$n_p := \frac{1}{L^d} a_p^+ a_p \quad \text{resp.} \quad n_x := a_x^+ a_x$$

count the # of electrons (0 or 1) with momentum p or position x.

1. IDEAL FERMI GAS IN RANDOM MEDIUM

Random Hamiltonian for fermion field

$$H_{\omega} := T + \eta V_{\omega}$$

Kinetic energy operator with 1-electron kinetic energy E(p)

$$T = \sum_{p \in \Lambda_L^*} E(p) n_p$$

Random potential, $\{\omega_x\}$ i.i.d., centered, normalized, Gaussian

$$V_{\omega} := \sum_{x \in \Lambda_L} \omega_x \, n_x$$

Weak disorder: $0 < \eta \ll 1$.

 C^* -algebra of bounded operators on \mathfrak{F} :

$$\mathfrak{A} := \overline{\{\text{bounded operators on } \mathfrak{F}\}}^{\|\cdot\|_{op}}$$

Consider a normalized, translation-invariant, deterministic state

$$\rho_0:\mathfrak{A}\longrightarrow\mathbb{C}$$

preserving particle number, $\rho_0([A, N]) = 0 \ \forall A \in \mathfrak{A} \ (N = \sum n_x).$

Define the time-evolved state

$$\rho_t(A) := \rho_0(e^{itH_\omega} A e^{-itH_\omega}),$$

and study in particular

$$\mathbb{E}[\rho_t(n_p)]$$

(expected number of electrons with momentum p at time t)

1.1. THERMODYNAMIC AND KINETIC SCALING LIMIT

Thm [C-Sasaki, JSP 08]

Assume ρ_0 number conserving + translation invariant.

For any T > 0 and all test functions f, g,

$$\Omega_T^{(2)}(f;g) := \lim_{\eta \to 0} \lim_{L \to \infty} \mathbb{E}[\rho_{T/\eta^2}(a^+(f)a(g))]$$

(macroscopic 2-point correlation) exists and is translation invariant.

Here,

$$a^{+}(f) := \frac{1}{L^{d}} \sum_{\Lambda_{L}^{*}} f(p) a_{p}^{+} \equiv \int dp f(p) a_{p}^{+} = (a(f))^{*}$$

It defines inner product of f, g

$$\Omega_T^{(2)}(f;g) = \int_{\mathbb{T}^d} dp \, F_T(p) \, \overline{f(p)} \, g(p)$$

where $F_T(p)$ satisfies the linear Boltzmann equation

$$\partial_T F_T(p) = 2\pi \int_{\mathbb{T}^d} dp' \,\delta(E(p') - E(p)) \left(F_T(p') - F_T(p) \right)$$

with initial condition

$$F_0(p) = \lim_{L \to \infty} \rho_0(n_p)$$

(occupation density of momentum p)

OUTLINE OF THE PROOF

Heisenberg evolution of the creation- and annihilation operators:

$$a(f,t) := e^{itH_{\omega}}a(f)e^{-itH_{\omega}} = a(f_t),$$

where f is a test function, and $a(f) = \int dp f(p) a_p$.

Expression $a(f_t)$ because H_{ω} is bilinear in a^+, a .

In particular, $a(f_0) = a(f)$, and

$$i\partial_t a(f_t) = [H_{\omega}, a(f_t)]$$

= $a(\Delta f_t) + a(\eta \omega_x f_t),$

 Δ is the nearest neighbor Laplacian on Λ_L .

Thus, f_t solves the random Schrödinger equation (Anderson model)

$$i\partial_t f_t \,=\, \Delta f_t \,+\, \eta\,\omega_x f_t$$

$$f_0 = f.$$

Strategy: Determine dynamics of test fcts, f_t , g_t . Subsequently,

$$\rho_t(a^+(f)a(g)) = \rho_0(a^+(f_t)a(g_t))$$

$$= \int dp \, dq \underbrace{\rho_0(a_p^+a_q)}_{\delta(p-q)J(p)} \overline{f_t(p)} g_t(q)$$

$$= \int dp \, J(p) \, \overline{f_t(p)} g_t(p)$$

By the Pauli principle (momentum p occupied by ≤ 1 fermion),

$$0 \leq J(p) = \rho_0(n_p) \leq 1.$$

Example of free Gibbs state: $J(p) = \frac{1}{1+e^{\beta(E(p)-\mu)}}$, Fermi-Dirac distribution.

Analysis similar to Boltzmann limit for weakly disordered Anderson model !

Related works

(dynamics of Anderson model, excluding localization)

- Spohn [77]
- Erdös-Yau [00], Erdös [02], Erdös-Salmhofer-Yau [05]
- Lukkarinen [04], Lukkarinen-Spohn [05]
- Poupaud-Vasseur [03]
- Bourgain [02, 03]
- Shubin-Schlag-Wolff [02]
- Rodnianski-Schlag [03], Denisov [04], G. Perelman [04]
- C [05, 05, 06]

Duhamel series and Feynman graphs

Pick $N \in \mathbb{N}$, to be optimized later.

Write solutions f_t , g_t of random Schrödinger eq, with test functions as initial data, as truncated Duhamel series,

$$f_t = f_t^{(\leq N)} + f_t^{(>N)},$$

with remainder term $f_t^{(>N)}$, and

$$f_t^{(\leq N)} := \sum_{n=0}^N f_t^{(n)}.$$

Duhamel term of order $O(\eta^n)$ is given by

$$\widehat{f}_t^{(n)}(p) := \eta^n e^{\epsilon t} \int d\alpha \, e^{it\alpha} \int dk_0 \cdots dk_n \, \delta(p - k_0) \\ \left[\prod_{j=0}^n \frac{1}{E(k_j) - \alpha - i\epsilon} \right] \left[\prod_{j=1}^n \widehat{V}_\omega(k_j - k_{j-1}) \right] \widehat{f}(k_n) \, .$$

in resolvent form, and in frequency space representation.

From contour deformation, and to keep $e^{\epsilon t}$ bounded $\forall t$,

$$\epsilon = \frac{1}{t}$$

Induces expansion of pair correlation,

$$\rho_t(a^+(f)a(g)) = \rho_0(a^+(f_t)a(g_t)) = \sum_{n,\tilde{n}\in\mathcal{I}_N} \rho_0(a^+(f_t^{(n)})a(g_t^{(\tilde{n})}))$$

for $\mathcal{I}_N := \{1, ..., N, > N\}$.

Thus, for $n, \tilde{n} \leq N$, $\bar{n} := \frac{n+\tilde{n}}{2} \in \mathbb{N}$ (and $\widehat{V}_{\omega}(u)^* = \widehat{V}_{\omega}(-u)$),

$$\mathbb{E}[\rho_0(a^+(f_t^{(n)})a(g_t^{(\tilde{n})})] = \eta^{2\bar{n}} e^{2\epsilon t} \int d\alpha \, d\tilde{\alpha} \, e^{it(\alpha-\tilde{\alpha})}$$
$$\int dp_0 \cdots dp_{2\bar{n}+1} \, \overline{f(p_0)} \, g(p_{2\bar{n}+1}) \, J(p_n) \, \delta(p_n - p_{n+1})$$
$$\prod_{j=0}^n \frac{1}{E(p_j) - \alpha - i\epsilon} \prod_{\ell=n+1}^{2\bar{n}+1} \frac{1}{E(p_\ell) - \tilde{\alpha} + i\epsilon}$$
$$\mathbb{E}\Big[\prod_{j=1}^n \widehat{V}_\omega(p_j - p_{j-1}) \prod_{j=n+2}^{2\bar{n}+1} \widehat{V}_\omega(p_j - p_{j-1})\Big]$$

similar as for Anderson model ! \Rightarrow Feynman graph expansion.

Proof strategy:

Complicated, high-dimensional singular integrals (resolvents !!).

Classification of Feynman graphs ([EY,ESY,C]):

Crossing and nesting diagrams yield small error terms.

Decorated ladder diagrams are dominant.

Sum of Feynman amplitudes of decorated ladder diagrams yields solution of linear Boltzmann equation.

1.1.1. DISCUSSION OF RESULT

Consider Gibbs state for a free fermion gas,

$$\rho_0(A) = \frac{1}{Z_{\beta,\mu}} \operatorname{Tr}(e^{-\beta(T-\mu N)}A) , \quad Z_{\beta,\mu} := \operatorname{Tr}(e^{-\beta(T-\mu N)})$$

at inverse temperature β , and with chemical potential μ .

<u>Main observation:</u>

Momentum distribution (Fermi-Dirac) in free Gibbs state

$$F_0(p) = \lim_{L \to \infty} \rho_0(n_p) = \frac{1}{1 + e^{\beta(E(p) - \mu)}}$$

is a stationary solution of the Boltzmann eq, $\forall 0 < \beta \leq \infty$.

Also true in zero temperature limit $\beta \to \infty$ (in the weak sense) $\frac{1}{1 + e^{\beta(E(p) - \mu)}} \to \chi[E(p) < \mu].$

Nontrivial provided that $\mu > 0$.

Question:

Under time evolution generated by H_{ω} , does the momentum distribution of the free Gibbs state drift towards a new equilibrium with a smaller occupation probability of high momenta ?

Diffusive drift due to localizing effect of random potential ?

Answer:

Not in kinetic time scale; momentum distribution persists.

Method suggests persistence into diffusive time scale ([ESY]).

A state ρ_0 is quasifree (determinantal) if

 $\rho_0(a^+(f_1)\cdots a^+(f_r)a(g_1)\cdots a(g_s))$

 $= \delta_{r,s} \det \left[\rho_0(a^+(f_i)a(g_j)) \right]_{1 \le i,j \le r}.$

Easy to show that $\rho_t(A)$ is quasifree with probability 1.

But: Almost sure quasifreeness $\neq \mathbb{E}[\rho_t(\cdot)]$ is quasifree. (quasifreeness is a *nonlinear* condition on determinants !)

In fact, $\mathbb{E}[\rho_t(\cdot)]$ is not quasifree for any $\eta > 0$.

However, it possesses a quasifree kinetic scaling limit:

Thm [C-Sasaki, JSP 08]

Assume ρ_0 number conserving + translation invariant + quasifree. Then, for all test functions f_j, g_ℓ , and any T > 0, 2*r*-correlation fct

$$\Omega_T^{(2r)}(f_1, \dots, f_r; g_1, \dots, g_r)$$

:= $\lim_{\eta \to 0} \lim_{L \to \infty} \mathbb{E}[\rho_{T/\eta^2}(a^+(f_1) \cdots a^+(f_r) a(g_1) \cdots a(g_r))]$
= $\det \left[\Omega_T^{(2)}(f_i; g_j)\right]_{1 \le i,j \le r},$

with the macroscopic 2-point correlation as before,

$$\Omega_T^{(2)}(f_i;g_j) = \int dp F_T(p) \overline{f_i(p)} g_j(p),$$

and $F_T(p)$ solves the previous linear Boltzmann equation.

Proof. Result

$$\lim_{\eta \to 0} \lim_{L \to \infty} \left| \mathbb{E}[\rho_{T/\eta^2}(a^+(f_1) \cdots a^+(f_r) a(g_1) \cdots a(g_r))] - \det \left[\Omega_T^{(2)}(f_i; g_j) \right]_{1 \le i, j \le r} \right| = 0$$

Proof similar to:

Thm [C, CMP '06] Globally in *T*, convergence in higher mean, $\lim_{\eta \to 0} \mathbb{E} \left[\left| \left\langle W_T^{(\eta^2)}, J \right\rangle - \left\langle F_T, J \right\rangle \right|^r \right] = 0$

for any $1 \leq r < \infty$ for weakly disordered Anderson model. Here, $W_T^{(\eta^2)}$ is the macroscopic rescaled Wigner transform, $F_T(X, V)$ solves a linear Boltzmann eq. and J(X, V) is a test fct. \Box Among all Feynman graphs, only class of disconnected graphs is dominant and O(1).

2. Interacting (mean field) Fermi gas in random medium

Joint work with I. Rodnianski.

Consider the time-dependent Hamiltonian

$$H(t) = T + \eta V_{\omega} + \lambda W(t)$$

where the fermion-fermion interaction is modeled by

$$W(t) = \sum_{x,y} v(x-y) \left\{ \mathbb{E}[\rho_t(a_x^+ a_x)] a_y^+ a_y - \mathbb{E}[\rho_t(a_y^+ a_x)] a_x^+ a_y \right\}$$

 \approx direct and exchange term (similar to Hartree-Fock approx.).

Dynamics of two-point correlation

$$i\partial_t \rho_t(a_p^+ a_q)$$

$$= (E(p) - E(q)) \rho_t(a_p^+ a_q)$$

$$+ \lambda \int du \mathbb{E}[\rho_t(\frac{1}{L^d} a_u^+ a_u)] (\hat{v}(u-p) \rho_t(a_u^+ a_q))$$

$$- \hat{v}(q-u) \rho_t(a_p^+ a_u)]$$

$$+\eta \int du \,\widehat{\omega}(u-p)\rho_t(a_u^+a_q) - \widehat{\omega}(q-u)\rho_t(a_p^+a_u)$$

Key observations:

- Not translation invariant for generic realization of V_{ω} . But translation invariant on \mathbb{E} -average !
- So far, equation does not close. But taking \mathbb{E} , it closes !

Translation invariant average

$$\mathbb{E}[\rho_t(a^+(f)a(g))] = \int dp \,\overline{f(p)} \,g(p)\,\mu_t(p)$$

where

$$\mu_t(p) = \mathbb{E}[\rho_t(n_p)],$$

momentum distribution function, averaged over random potential.

Dynamics of $\mu_t(p)$?

The average

$$\mathbb{E}[\rho_t(\,\cdot\,)]\,:\,\mathfrak{A}\,\to\,\mathbb{C}$$

solves

$$i\partial_t \mathbb{E}[\rho_t(A)] = \mathbb{E}[\rho_t([H(t), A])]$$
$$\mathbb{E}[\rho_0] = \rho_0.$$

May set $A = n_p$ by translation invariance.

Note that the Hamiltonian

$$H(t) = T + \eta V_{\omega} + \lambda W(t)$$

also depends on the unknown $\mu_t(p) = \mathbb{E}[\rho_t(n_p)].$

 \Rightarrow Self-consistent nonlinear evolution equation for $\mu_t(p)!$

Again, use η (randomness) as Duhamel expansion parameter.

Now, the "free evolution" $(\eta = 0 \text{ but } \lambda \neq 0)$ is nonlinear !

Some key questions:

Dynamics at long time scales ?

Dependence of Boltzmann limit on ratio between λ and η ?

Effects of nonlinearity?

Persistence of Fermi-Dirac distribution ?

The regime
$$\lambda \leq C\eta^2$$

The interaction between electrons and the effect of the random potential per time unit is comparable if $\lambda = C\eta^2$.

Thm [C-Rodnianski]

In the scaling limit determined by

$$t = \frac{T}{\eta^2}$$
, $\eta \to 0$, $\lambda \le O(\eta^2)$,

the weak limit $\mathbb{E}[\rho_{T/\eta^2}(\cdot)] \to F$ holds where

$$\partial_T F_T(p) = 2\pi \int du \,\delta(E(u) - E(p)) \left(F_T(u) - F_T(p)\right)$$

with $F_0(p) = \mu_0(p)$.

The Hartree-Fock interactions *cancel*, due to translation invariance !

Proof:

Instead of free evolution $e^{i(t-s)E(p)}$, use

$$U_{s,t}(p) := e^{i \int_s^t ds' \left(E(p) - \lambda \widehat{v} * \mu_{s'}(p) \right)}$$

and carry out Feynman graph expansion in powers of η .

Main difficulties:

• Free evolution operator depends on unknown $\mu_t(p)$, and satisfies *nonlinear* evolution equation

 \Rightarrow Resolvent calculus *unvailable* !

- \Rightarrow Entire analysis is based on *stationary phase estimates*.
- Recombination of decorated ladders much more complicated due to *nonlinear* "free" evolution.

 \Rightarrow Phase cancellations and stationary phase.

Lemma Let
$$\kappa_s := \hat{v} * \mu_s$$
. Then, uniformly in $\tau \ge 0$,
 $\left| \int_{\mathbb{R}^+} ds \, e^{-is(E(u) - \alpha - i\epsilon)} \, e^{-i\lambda \int_{\tau}^{\tau + s} \kappa_{s'}(u)} ds' \right| < \left(1 + \frac{\lambda}{\epsilon}\right) \frac{C}{|E(u) - \alpha| + \epsilon},$

where E(u) is the symbol of the nearest neighbor Laplacian on \mathbb{Z}^3 .

Sketch of proof. We define

$$\overline{\kappa}_{t,t+s}(u) := \frac{1}{s} \int_t^{t+s} ds' \,\kappa_{s'}(u) \,.$$

Pauli principle $\Rightarrow |\overline{\kappa}_{t,t+s}(u)| < C_0$, uniformly in t and $s \ge 0$. The integral on the left hand side of (1) can be written as

$$(*) := \int_{\mathbb{R}^+} ds \, e^{-is(E(u) - \alpha + \lambda \overline{\kappa}_{t,t+s}(u))} e^{-\epsilon s}$$

To estimate it, we split \mathbb{R}_+ into disjoint intervals

$$I_j := [j\zeta, (j+1)\zeta) \quad , \ j \in \mathbb{N}_0$$

of length

$$\zeta := \frac{\pi}{|E(u) - \alpha|}.$$

We find

$$(*) = \sum_{j \in 2\mathbb{N}_0} \int_{I_j} ds \left(e^{-is(E(u) - \alpha + \lambda \overline{\kappa}_{t,t+s}(u))} e^{-\epsilon s} + e^{-i(s+\zeta)(E(u) - \alpha + \lambda \overline{\kappa}_{t,t+s+\zeta}(u))} e^{-\epsilon(s+\zeta)} \right),$$

where the second term in the bracket accounts for the integrals over I_j with j odd.

Evidently, $e^{-i\zeta(E(u)-\alpha)} = e^{\mp i\pi} = -1.$

Therefore, for
$$j$$
 fixed,

$$\int_{I_j} ds \left(e^{-is(E(u)-\alpha+\lambda\overline{\kappa}_{t,t+s}(u))} e^{-\epsilon s} + e^{-i(s+\zeta)(E(u)-\alpha+\lambda\overline{\kappa}_{t,t+s+\zeta}(u))} e^{-\epsilon(s+\zeta)} \right)$$

$$= \int_{I_j} ds e^{-is(E(u)-\alpha+\lambda\overline{\kappa}_{t,t+s}(u))} \left(e^{-\epsilon s} - e^{-\epsilon(s+\zeta)} \right)$$

$$+ \int_{I_j} ds e^{-is(E(u)-\alpha)} e^{-\epsilon(s+\zeta)} \left(e^{-i\lambda s\overline{\kappa}_{t,t+s}(u)} - e^{-i\lambda(s+\zeta)\overline{\kappa}_{t,t+s}(u)} \right)$$

$$+ \int_{I_j} ds e^{-is(E(u)-\alpha)} e^{-\epsilon(s+\zeta)} \left(e^{-i\lambda(s+\zeta)\overline{\kappa}_{t,t+s}(u)} - e^{-i\lambda(s+\zeta)\overline{\kappa}_{t,t+s+\zeta}(u)} \right)$$

$$=: (*)_1 + (*)_2 + (*)_3.$$

Clearly,

$$\sum_{j \in 2\mathbb{N}_0} |(*)_1| < \int_{\mathbb{R}_+} ds \, e^{-\epsilon s} \, \epsilon \, \zeta = \frac{\pi}{|E(u) - \alpha|} \,,$$

and

$$\sum_{j \in 2\mathbb{N}_0} |(*)_2| < \int_{\mathbb{R}_+} ds \, e^{-\epsilon s} \, \lambda \, \zeta = \frac{\lambda}{\epsilon} \, \frac{\pi}{|E(u) - \alpha|} \, .$$

For $(*)_3$, we observe that for $s_1 < s_2$,

$$\overline{\kappa}_{t,t+s_2}(u) - \overline{\kappa}_{t,t+s_1}(u) = \left(\frac{1}{s_2} - \frac{1}{s_1}\right) \int_t^{t+s_2} ds' \,\kappa_{s'}(u) + \frac{1}{s_1} \left(\int_t^{t+s_2} - \int_t^{t+s_1}\right) ds' \,\kappa_{s'}(u) \,.$$

Since $|\kappa_{s'}(u)| < C_0$ uniformly in s', we immediately obtain

$$\left|\overline{\kappa}_{t,t+s_2}(u) - \overline{\kappa}_{t,t+s_1}(u)\right| < C \frac{s_2 - s_1}{s_1},$$

so that in particular,

$$|\overline{\kappa}_{t,t+\zeta+s}(u) - \overline{\kappa}_{t,t+s}(u)| < C \frac{\zeta}{s}.$$

Thus, we conclude that

$$\sum_{j \in 2\mathbb{N}_0} (*) \leq C \zeta \lambda \int_{\mathbb{R}_+} ds \, \frac{(s+\zeta)}{s} \, e^{-\epsilon(s+\zeta)}$$
$$\leq C \, \frac{\pi}{|E(u)-\alpha|} \, \frac{\lambda}{\epsilon} \, .$$

This proves that for $|E(u) - \alpha| > 0$ and $\lambda = O(\epsilon)$,

$$|(*)| < \frac{C}{|E(u) - \alpha|}.$$

If $|E(u) - \alpha| \leq \epsilon$, then the trivial bound

$$(*)| < \int_{\mathbb{R}_+} ds \, e^{-\epsilon s} < \frac{C}{\epsilon}$$

is better, which ignores phase cancellations.

In conclusion,

$$\left|\int_{\mathbb{R}^+} ds \, e^{-is(E(u)-\alpha-i\epsilon)} \, e^{-i\lambda \int_{\tau}^{\tau+s} \kappa_{s'}(u)} ds'\right| < \left(1+\frac{\lambda}{\epsilon}\right) \frac{C}{|E(u)-\alpha|+\epsilon},$$

as claimed.

Use this estimate to adapt some resolvent estimates for the linear case. This allows to control error terms (non-ladder diagrams).

To control dominant terms (decorated ladder), can't lose the information about the phase (can't afford absolute values) \Rightarrow explicit stationary phase analysis.

The regime $\eta = o(\sqrt{\lambda})$

In this regime, the limiting distribution is *stationary*.

Thm [C-Rodnianski]

In the scaling limit determined by

$$t = \frac{T}{\lambda} , \quad \lambda \to 0 , \quad \eta = o(\sqrt{\lambda}),$$

the weak limit $\mathbb{E}[\rho_{T/\lambda}(\cdot)] \to F_T$ holds, where

$$\partial_T F_T(p) = 0$$

with initial condition $F_0(p) = \mu_0(p)$.

The regime $t = T/\eta^2$ and $\lambda = O_{\eta}(1)$

This regime is very difficult to control.

Partial result: Characterization of stationary solutions.

Fixed point equation: Let

$$\mu_t(p) := \frac{1}{L^d} \mathbb{E}[\rho_t(a_p^+ a_p)].$$

Expand right hand side of

$$\int dp \,\overline{f(p)} \,g(p) \,\mu_t(p) = \mathbb{E}[\rho_0(\mathcal{U}_t^* a^+(f)a(g)\mathcal{U}_t)]$$
$$= \mathcal{G}[\mu_\bullet; \eta; \lambda; t; f; g]$$

into truncated Duhamel series; fixed point equation for μ_t .

Thm [C-Rodnianski]

Assume there exists a stationary fixed point

$$F(p) = F_T(p) \equiv \mu_0(p)$$

in the kinetic scaling limit determined by

$$t = \frac{T}{\eta^2}$$
 , $\eta \to 0$, $\lambda \le O(1)$.

Then, it satisfies

$$F(p) = 2\pi \int du \,\delta(\,\widetilde{E}_{\lambda}(u) - \widetilde{E}_{\lambda}(p)\,)\,F(u)$$

where $\widetilde{E}_{\lambda}(p) = E(p) - \lambda(\widehat{v} * F)(p).$

Energy renormalization !

Outlook

Dynamical equations for scaling $t = T/\eta^2$ and $\lambda = O(1)$.

 \Rightarrow Very difficult problem.

Spatially inhomogenous initial data.

More detailed study of diffusive regime.