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Motivating Problem

Extremely difficult: Interacting Fermi gas on ΛL := [−L,L]d ∩ Zd

Hλ :=
∫
dpE(p)np + λ

∑
x,y∈ΛL

nx v(x− y)ny .

Conjecture: Let t = T
λ2 , and ρ0 free Gibbs state. Then,

FT (p) := lim
λ→0

lim
L→∞

ρ0( eiT/λ
2Hλ np e

−iT/λ2Hλ )

exists and satisfies the Boltzmann-Uhlenbeck-Uehling equation

∂TFT (p)

= −4π

Z
dp1 dp2 dq1 dq2 δ( p− p1 )

˛̨̨ bv(p1 − q1)− bv(p1 − q2)
˛̨̨2

δ( p1 + p2 − q1 − q2 ) δ(E(p1) + E(p2)− E(q1)− E(q2) )h
FT (p1)FT (p2) eFT (q1) eFT (q2) − FT (q1)FT (q2) eFT (p1) eFT (p2)

i
,

where F̃T (p) := 1− FT (p).
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Some work towards Boltzmann-Uhlenbeck-Uehling limit from
interacting Fermi gas.

• Benedetto, Castella, Esposito, Pulvirenti [04]
(∃ subseries in Feynman graph expansion yielding BUU.
No control on errors)

• Hugenholtz [83]
(physical argumentation motivating BUU limit)

• Ho-Landau [97]
(proof to order O(λ2))

• Erdös-Salmhofer-Yau [04]
(quasifreeness of correlations implies BUU)

• Spohn [06] (survey article)

• C-Sasaki, ’08
(ok to order O(λ3), probably ok to O(λ4), unpublished)
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Quantum dynamics of fermion gases in random media

Consider electron gas in a medium containing randomly distributed
impurities (e.g. semiconductor).

Another interpretation: Randomness ∼ simplification of particle
interaction with all other fermions in BUU problem.

Question:

• How do the Pauli principle and manybody interactions modify
the transport properties ?

• Dynamics of the momentum distribution ?
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In this talk:

• Joint with Itaru Sasaki (Shinshu U.) [JSP, 08]:
Ideal Fermi gas in random medium.

• Joint work with Igor Rodnianski (Princeton):
Mean field interacting Fermi gas in random medium.

Prove that kinetic scaling limit of momentum distribution function
is determined by solution of a Boltzmann equation.
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Related Works

(Derivation of dynamical Hartree-Fock equations)

• Bardos-Ducomet-Golse-Gottlieb-Mauser, [07].

• Bove-Da Prato-Fano [76]
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Basics

Box ΛL ⊂ Zd of size L� 1, dual lattice Λ∗L = ΛL/L ⊂ Td.

Hilbert space of Fermi field F = ⊕n≥0Fn

Fn = completely antisymmetric `2-functions in n variables.

Creation operators a+
p : Fn → Fn+1 and annihilation operators

aq : Fn → Fn−1, satisfying canonical anticommutation relations

a+
p aq + aq a

+
p = δ(p− q) :=

 Ld if p = q

0 otherwise.

Remark: The operators

np :=
1
Ld

a+
p ap resp. nx := a+

x ax

count the # of electrons (0 or 1) with momentum p or position x.
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1. Ideal Fermi gas in random medium

Random Hamiltonian for fermion field

Hω := T + η Vω

Kinetic energy operator with 1-electron kinetic energy E(p)

T =
∑
p∈Λ∗L

E(p)np

Random potential, {ωx} i.i.d., centered, normalized, Gaussian

Vω :=
∑
x∈ΛL

ωx nx

Weak disorder: 0 < η � 1.
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C∗-algebra of bounded operators on F:

A := {bounded operators on F}
‖ · ‖op

Consider a normalized, translation-invariant, deterministic state

ρ0 : A −→ C

preserving particle number, ρ0([A,N ]) = 0 ∀A ∈ A (N =
∑

nx).

Define the time-evolved state

ρt(A) := ρ0( eitHω Ae−itHω ) ,

and study in particular

E[ ρt(np ) ]

(expected number of electrons with momentum p at time t)
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1.1. Thermodynamic and Kinetic Scaling Limit

Thm [C-Sasaki, JSP 08]

Assume ρ0 number conserving + translation invariant.

For any T > 0 and all test functions f, g,

Ω(2)
T ( f ; g ) := lim

η→0
lim
L→∞

E[ρT/η2( a+(f) a(g) )]

(macroscopic 2-point correlation) exists and is translation invariant.

Here,

a+(f) :=
1
Ld

∑
Λ∗L

f(p) a+
p ≡

∫
dp f(p) a+

p = (a(f))∗
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It defines inner product of f, g

Ω(2)
T (f ; g) =

∫
Td
dpFT (p) f(p) g(p)

where FT (p) satisfies the linear Boltzmann equation

∂TFT (p) = 2π
∫

Td
dp′ δ(E(p′)− E(p) ) (FT (p′)− FT (p) )

with initial condition

F0(p) = lim
L→∞

ρ0(np )

(occupation density of momentum p) �
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Outline of the Proof

Heisenberg evolution of the creation- and annihilation operators:

a(f, t) := eitHωa(f)e−itHω = a(ft) ,

where f is a test function, and a(f) =
∫
dp f(p) ap.

Expression a(ft) because Hω is bilinear in a+, a.

In particular, a(f0) = a(f), and

i∂ta(ft) = [Hω , a(ft) ]

= a( ∆ft ) + a( η ωx ft ) ,

∆ is the nearest neighbor Laplacian on ΛL.
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Thus, ft solves the random Schrödinger equation (Anderson model)

i∂tft = ∆ft + η ωxft

f0 = f .

Strategy: Determine dynamics of test fcts, ft, gt. Subsequently,

ρt( a+(f) a(g) ) = ρ0( a+(ft) a(gt) )

=
∫
dp dq ρ0( a+

p aq)︸ ︷︷ ︸
δ(p−q) J(p)

ft(p) gt(q)

=
∫
dp J(p) ft(p) gt(p)

13



By the Pauli principle (momentum p occupied by ≤ 1 fermion),

0 ≤ J(p) = ρ0(np ) ≤ 1 .

Example of free Gibbs state: J(p) = 1
1+eβ(E(p)−µ) , Fermi-Dirac

distribution.

Analysis similar to Boltzmann limit for weakly disordered
Anderson model !
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Related works

(dynamics of Anderson model, excluding localization)

• Spohn [77]

• Erdös-Yau [00], Erdös [02], Erdös-Salmhofer-Yau [05]

• Lukkarinen [04], Lukkarinen-Spohn [05]

• Poupaud-Vasseur [03]

• Bourgain [02, 03]

• Shubin-Schlag-Wolff [02]

• Rodnianski-Schlag [03], Denisov [04], G. Perelman [04]

• C [05, 05, 06]
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Duhamel series and Feynman graphs

Pick N ∈ N, to be optimized later.

Write solutions ft, gt of random Schrodinger eq, with test functions
as initial data, as truncated Duhamel series,

ft = f
(≤N)
t + f

(>N)
t ,

with remainder term f
(>N)
t , and

f
(≤N)
t :=

N∑
n=0

f
(n)
t .
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Duhamel term of order O(ηn) is given by

f̂
(n)
t (p) := ηn eεt

∫
dα eitα

∫
dk0 · · · dkn δ(p− k0)[ n∏

j=0

1
E(kj)− α− iε

][ n∏
j=1

V̂ω(kj − kj−1)
]
f̂(kn) .

in resolvent form, and in frequency space representation.

From contour deformation, and to keep eεt bounded ∀ t,

ε =
1
t
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Induces expansion of pair correlation,

ρt( a+(f) a(g) ) = ρ0( a+(ft) a(gt) ) =
∑

n,en∈IN
ρ0( a+(f (n)

t ) a(g(en)
t ) )

for IN := {1, . . . , N,> N} .
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Thus, for n, en ≤ N , n̄ := n+en
2
∈ N (and bVω(u)∗ = bVω(−u)),

E[ρ0( a+(f
(n)
t ) a(g

(en)
t ) )] = η2n̄ e2εt

Z
dα deα eit(α−eα)Z

dp0 · · · dp2n̄+1 f(p0) g(p2n̄+1) J(pn) δ(pn − pn+1)

nY
j=0

1

E(pj)− α− iε

2n̄+1Y
`=n+1

1

E(p`)− eα+ iε

E
h nY
j=1

bVω(pj − pj−1)

2n̄+1Y
j=n+2

bVω(pj − pj−1)
i

similar as for Anderson model ! ⇒ Feynman graph expansion.

p
n

p
n+1

p
0

p
2n-

II III

I

II I'

I
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Proof strategy:

Complicated, high-dimensional singular integrals (resolvents !!).

Classification of Feynman graphs ([EY,ESY,C]):

Crossing and nesting diagrams yield small error terms.

Decorated ladder diagrams are dominant.

Sum of Feynman amplitudes of decorated ladder diagrams yields
solution of linear Boltzmann equation. �
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1.1.1. Discussion of Result

Consider Gibbs state for a free fermion gas,

ρ0(A) =
1

Zβ,µ
Tr( e−β(T−µN)A ) , Zβ,µ := Tr( e−β(T−µN) )

at inverse temperature β, and with chemical potential µ.

Main observation:

Momentum distribution (Fermi-Dirac) in free Gibbs state

F0(p) = lim
L→∞

ρ0(np ) =
1

1 + eβ(E(p)−µ)

is a stationary solution of the Boltzmann eq, ∀ 0 < β ≤ ∞.
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Also true in zero temperature limit β →∞ (in the weak sense)

1
1 + eβ(E(p)−µ)

→ χ[E(p) < µ] .

Nontrivial provided that µ > 0.
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Question:

Under time evolution generated by Hω, does the momentum
distribution of the free Gibbs state drift towards a new equilibrium
with a smaller occupation probability of high momenta ?

Diffusive drift due to localizing effect of random potential ?

Answer:

Not in kinetic time scale; momentum distribution persists.

Method suggests persistence into diffusive time scale ([ESY]).
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1.2. Persistence of Quasifreeness

A state ρ0 is quasifree (determinantal) if

ρ0( a+(f1) · · · a+(fr)a(g1) · · · a(gs) )

= δr,s det
[
ρ0( a+(fi)a(gj) )

]
1≤i,j≤r .

Easy to show that ρt(A) is quasifree with probability 1.

But: Almost sure quasifreeness 6⇒ E[ρt( · )] is quasifree.
(quasifreeness is a nonlinear condition on determinants !)

In fact, E[ρt( · )] is not quasifree for any η > 0.

However, it possesses a quasifree kinetic scaling limit:
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Thm [C-Sasaki, JSP 08]

Assume ρ0 number conserving + translation invariant + quasifree.

Then, for all test functions fj , g`, and any T > 0, 2r-correlation fct

Ω(2r)
T ( f1, . . . , fr ; g1, . . . , gr )

:= lim
η→0

lim
L→∞

E[ρT/η2( a+(f1) · · · a+(fr) a(g1) · · · a(gr) )]

= det
[

Ω(2)
T ( fi ; gj )

]
1≤i,j≤r ,

with the macroscopic 2-point correlation as before,

Ω(2)
T ( fi ; gj ) =

∫
dpFT (p) fi(p) gj(p) ,

and FT (p) solves the previous linear Boltzmann equation. �
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Proof. Result

lim
η→0

lim
L→∞

∣∣∣E[ρT/η2( a+(f1) · · · a+(fr) a(g1) · · · a(gr) )]

− det
[

Ω(2)
T ( fi ; gj )

]
1≤i,j≤r

∣∣∣ = 0

Proof similar to:

Thm [C, CMP ’06] Globally in T , convergence in higher mean,

lim
η→0

E
[ ∣∣∣ 〈W (η2)

T , J
〉
−
〈
FT , J

〉 ∣∣∣r ] = 0

for any 1 ≤ r <∞ for weakly disordered Anderson model.

Here, W (η2)
T is the macroscopic rescaled Wigner transform,

FT (X,V ) solves a linear Boltzmann eq, and J(X,V ) is a test fct. �
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Among all Feynman graphs, only class of disconnected graphs is
dominant and O(1).

j=1

j=6

1 n n+1 n

ko
(3)

kn+1
(3)

j=2
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2. Interacting (mean field) Fermi gas in random medium

Joint work with I. Rodnianski.

Consider the time-dependent Hamiltonian

H(t) = T + η Vω + λW (t)

where the fermion-fermion interaction is modeled by

W (t) =
X
x,y

v(x− y) {E[ ρt(a
+
x ax) ] a+

y ay − E[ ρt(a
+
y ax) ] a+

x ay }

≈ direct and exchange term (similar to Hartree-Fock approx.).
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Dynamics of two-point correlation

i∂t ρt( a
+
p aq )

= (E(p)− E(q) ) ρt( a
+
p aq )

+λ

Z
duE[ ρt(

1

Ld
a+
u au ) ] ( bv(u− p) ρt( a+

u aq )

− bv(q − u) ρt( a
+
p au ) )

+ η

Z
du bω(u− p)ρt( a+

u aq ) − bω(q − u)ρt( a
+
p au )

Key observations:

• Not translation invariant for generic realization of Vω.

But translation invariant on E-average !

• So far, equation does not close. But taking E, it closes !
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Translation invariant average

E[ ρt( a+(f) a(g) ) ] =
∫
dp f(p) g(p)µt(p)

where
µt(p) = E[ρt(np )] ,

momentum distribution function, averaged over random potential.

Dynamics of µt(p) ?
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The average
E[ρt( · )] : A → C

solves

i∂t E[ ρt(A ) ] = E[ ρt( [H(t) , A ] ) ]

E[ρ0] = ρ0 .

May set A = np by translation invariance.

Note that the Hamiltonian

H(t) = T + η Vω + λW (t)

also depends on the unknown µt(p) = E[ρt(np )].

⇒ Self-consistent nonlinear evolution equation for µt(p)!
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Again, use η (randomness) as Duhamel expansion parameter.

Now, the ”free evolution” (η = 0 but λ 6= 0) is nonlinear !

Some key questions:

Dynamics at long time scales ?

Dependence of Boltzmann limit on ratio between λ and η ?

Effects of nonlinearity ?

Persistence of Fermi-Dirac distribution ?
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The regime λ ≤ Cη2

The interaction between electrons and the effect of the random
potential per time unit is comparable if λ = Cη2.

Thm [C-Rodnianski]

In the scaling limit determined by

t =
T

η2
, η → 0 , λ ≤ O(η2) ,

the weak limit E[ρT/η2( · )]→ F holds where

∂T FT (p) = 2π
∫
du δ(E(u)− E(p) ) (FT (u)− FT (p) )

with F0(p) = µ0(p).

The Hartree-Fock interactions cancel, due to translation invariance !
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Proof:

Instead of free evolution ei(t−s)E(p), use

Us,t(p) := ei
R t
s
ds′ (E(p)−λbv∗µs′ (p) )

and carry out Feynman graph expansion in powers of η.

Main difficulties:

• Free evolution operator depends on unknown µt(p), and
satisfies nonlinear evolution equation

⇒ Resolvent calculus unvailable !

⇒ Entire analysis is based on stationary phase estimates.

• Recombination of decorated ladders much more complicated
due to nonlinear ”free” evolution.

⇒ Phase cancellations and stationary phase. �
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Lemma Let κs := v̂ ∗ µs. Then, uniformly in τ ≥ 0,∣∣∣ ∫
R+
ds e−is(E(u)−α−iε) e−iλ

R τ+s
τ

κs′ (u)ds′
∣∣∣ < (

1 +
λ

ε

) C

|E(u)− α|+ ε
,

where E(u) is the symbol of the nearest neighbor Laplacian on Z3.

Sketch of proof. We define

κt,t+s(u) :=
1
s

∫ t+s

t

ds′ κs′(u) .

Pauli principle ⇒ |κt,t+s(u)| < C0, uniformly in t and s ≥ 0.

The integral on the left hand side of (1) can be written as

(∗) :=
∫

R+
ds e−is(E(u)−α+λκt,t+s(u))e−εs .

To estimate it, we split R+ into disjoint intervals

Ij := [ jζ , (j + 1)ζ ) , j ∈ N0

35



of length

ζ :=
π

|E(u)− α|
.

We find

(∗) =
∑
j∈2N0

∫
Ij

ds
(
e−is(E(u)−α+λκt,t+s(u))e−εs

+ e−i(s+ζ)(E(u)−α+λκt,t+s+ζ(u))e−ε(s+ζ)
)
,

where the second term in the bracket accounts for the integrals
over Ij with j odd.

Evidently, e−iζ(E(u)−α) = e∓iπ = −1.
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Therefore, for j fixed,Z
Ij

ds
“
e−is(E(u)−α+λκt,t+s(u))e−εs

+ e−i(s+ζ)(E(u)−α+λκt,t+s+ζ(u))e−ε(s+ζ)
”

=

Z
Ij

ds e−is(E(u)−α+λκt,t+s(u))` e−εs − e−ε(s+ζ) ´
+

Z
Ij

ds e−is(E(u)−α)e−ε(s+ζ)
`
e−iλsκt,t+s(u) − e−iλ(s+ζ)κt,t+s(u) ´

+

Z
Ij

ds e−is(E(u)−α)e−ε(s+ζ)
`
e−iλ(s+ζ)κt,t+s(u) − e−iλ(s+ζ)κt,t+s+ζ(u) ´

=: (∗)1 + (∗)2 + (∗)3 .

Clearly, ∑
j∈2N0

|(∗)1| <
∫

R+

ds e−εs ε ζ =
π

|E(u)− α|
,
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and ∑
j∈2N0

|(∗)2| <
∫

R+

ds e−εs λ ζ =
λ

ε

π

|E(u)− α|
.

For (∗)3, we observe that for s1 < s2,

κt,t+s2(u)− κt,t+s1(u) = (
1
s2
− 1
s1

)
∫ t+s2

t

ds′ κs′(u)

+
1
s1

(∫ t+s2

t

−
∫ t+s1

t

)
ds′ κs′(u) .

Since |κs′(u)| < C0 uniformly in s′, we immediately obtain

|κt,t+s2(u)− κt,t+s1(u)| < C
s2 − s1

s1
,

so that in particular,

|κt,t+ζ+s(u)− κt,t+s(u)| < C
ζ

s
.
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Thus, we conclude that∑
j∈2N0

(∗) ≤ C ζ λ

∫
R+

ds
(s+ ζ)
s

e−ε(s+ζ)

≤ C
π

|E(u)− α|
λ

ε
.

This proves that for |E(u)− α| > 0 and λ = O(ε),

|(∗)| < C

|E(u)− α|
.

If |E(u)− α| ≤ ε, then the trivial bound

|(∗)| <
∫

R+

ds e−εs <
C

ε

is better, which ignores phase cancellations.
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In conclusion,∣∣∣ ∫
R+
ds e−is(E(u)−α−iε) e−iλ

R τ+s
τ

κs′ (u)ds′
∣∣∣ < (

1 +
λ

ε

) C

|E(u)− α|+ ε
,

as claimed. �

Use this estimate to adapt some resolvent estimates for the linear
case. This allows to control error terms (non-ladder diagrams).

To control dominant terms (decorated ladder), can’t lose the
information about the phase (can’t afford absolute values)

⇒ explicit stationary phase analysis.
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The regime η = o(
√
λ)

In this regime, the limiting distribution is stationary.

Thm [C-Rodnianski]

In the scaling limit determined by

t =
T

λ
, λ → 0 , η = o(

√
λ) ,

the weak limit E[ρT/λ( · )]→ FT holds, where

∂T FT (p) = 0

with initial condition F0(p) = µ0(p).
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The regime t = T/η2 and λ = Oη(1)

This regime is very difficult to control.

Partial result: Characterization of stationary solutions.

Fixed point equation: Let

µt(p) :=
1
Ld

E[ ρt( a+
p ap ) ] .

Expand right hand side of∫
dp f(p) g(p)µt(p) = E[ ρ0(U∗t a+(f)a(g)Ut ) ]

= G[µ• ; η ; λ ; t ; f ; g ]

into truncated Duhamel series; fixed point equation for µt.
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Thm [C-Rodnianski]

Assume there exists a stationary fixed point

F (p) = FT (p) ≡ µ0(p)

in the kinetic scaling limit determined by

t =
T

η2
, η → 0 , λ ≤ O(1) .

Then, it satisfies

F (p) = 2π
∫
du δ( Ẽλ(u)− Ẽλ(p) )F (u)

where Ẽλ(p) = E(p)− λ( v̂ ∗ F )(p).

Energy renormalization !
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Outlook

Dynamical equations for scaling t = T/η2 and λ = O(1).

⇒ Very difficult problem.

Spatially inhomogenous initial data.

More detailed study of diffusive regime.
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