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MOTIVATING PROBLEM

Extremely difficult: Interacting Fermi gas on Ay, := [~L, L]¢ N Z4
Hy = /dpE(p)np + A Z Ng V(T — y)ny .
xz,yeEA

Conjecture: Let t = %, and pg free Gibbs state. Then,

Fr(p) := )l\li% Lli—{r;o o piT/ N\ Hx n, o —iT/A? Hy )

exists and satisfies the Boltzmann-Uhlenbeck-Uehling equation
Or Fr(p)
= —47T/dp1 dp2 dg dq2 6(p — p1) ‘ v(pr —q1) —0(p1 — q2)

0(p1+p2—qu—q2) 6(E(p1) + E(p2) — E(q1) — E(g2))
| Fr(p) Fr(p2) Fr(@)Pr(s) — Fr(a)Pr(a) Fr(p) Fr(p2) |
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where Fr(p) := 1 — Fr(p).



Some work towards Boltzmann-Uhlenbeck-Uehling limit from

interacting Fermi gas.

e Benedetto, Castella, Esposito, Pulvirenti [04]
(9 subseries in Feynman graph expansion yielding BUU.
No control on errors)

e Hugenholtz [83]
(physical argumentation motivating BUU limit)

e Ho-Landau [97]
(proof to order O(\?))

e Frdos-Salmhofer-Yau [04]

(quasifreeness of correlations implies BUU)
e Spohn [06] (survey article)

o (C-Sasaki, '08
(ok to order O(A3), probably ok to O(A\?*), unpublished)



QUANTUM DYNAMICS OF FERMION GASES IN RANDOM MEDIA

Consider electron gas in a medium containing randomly distributed

impurities (e.g. semiconductor).

Another interpretation: Randomness ~ simplification of particle

interaction with all other fermions in BUU problem.

Question:

e How do the Pauli principle and manybody interactions modify

the transport properties 7

e Dynamics of the momentum distribution 7



In this talk:

e Joint with Itaru Sasaki (Shinshu U.) [JSP, 08]:

Ideal Fermi gas in random medium.

e Joint work with Igor Rodnianski (Princeton):

Mean field interacting Fermi gas in random medium.

Prove that kinetic scaling limit of momentum distribution function

is determined by solution of a Boltzmann equation.



RELATED WORKS

(Derivation of dynamical Hartree-Fock equations)
e Bardos-Ducomet-Golse-Gottlieb-Mauser, [07].

e Bove-Da Prato-Fano [76]



BASICS

Box A;, C Z% of size L > 1, dual lattice A% = Ap/L C T,
Hilbert space of Fermi field § = @©,,>08n
&, = completely antisymmetric £2-functions in n variables.

Creation operators a; : §n — Sn+1 and annihilation operators
aq : §n — Sn—1, satisfying canonical anticommutation relations

L4 if p =g

+ +
aya, + aga; = o6(p—q) =
! o 0 otherwise.
Remark: The operators
Ny = icﬁa res ng ‘= al a
p = T4 U p. Nz = a, a

count the # of electrons (0 or 1) with momentum p or position .



1. IDEAL FERMI GAS IN RANDOM MEDIUM

Random Hamiltonian for fermion field

H, =T + nV,

Kinetic energy operator with 1-electron kinetic energy E(p)

Random potential, {w,} i.i.d., centered, normalized, Gaussian

V, = Z Wy My

TEA,

Weak disorder: 0 < n < 1.



C'*-algebra of bounded operators on §:

lop

A := {bounded operators on S}”

Consider a normalized, translation-invariant, deterministic state

po A — C

preserving particle number, pg([4, N]) = 0OVA € A (N =D ng).

Define the time-evolved state

,Ot(A) — po(eitHw Ae—z’tHw ) ’

and study in particular
Elpe(np )]

(expected number of electrons with momentum p at time t)



1.1. THERMODYNAMIC AND KINETIC SCALING LIMIT

Thm [C-Sasaki, JSP 08]
Assume py number conserving + translation invariant.

For any T > 0 and all test functions f, g,

0P (f;9) = lim lim E[pgz(at(f)a(g))]

n—0 L—oo

(macroscopic 2-point correlation) exists and is translation invariant.

Here,

() = 22 Y ) af = [dpfw)a = ()
A

10



It defines inner product of f, g

QP (f:9) :/ dp Fr(p) f(p) 9(p)

Td

where Fr(p) satisfies the linear Boltzmann equation

OFr(p) = 27 | df S(EG) — B)) (Pr(v) - Pr(p)

with initial condition

Fo(p) = Tim po(np)

L—oo

(occupation density of momentum p)
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OUTLINE OF THE PROOF

Heisenberg evolution of the creation- and annihilation operators:

a(f.t) = e™ea(fle”" = a(fr),

where f is a test function, and a(f) = [ dp f(p) ap.
Expression a(f;) because H,, is bilinear in a™, a.

In particular, a(fy) = a(f), and

ié’ta(ft) — [Hwa a(ft)]
= CL(Aft> + CL(nwmft)?

A is the nearest neighbor Laplacian on Ay,.
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Thus, f; solves the random Schrédinger equation (Anderson model)

WO ft = Aft + nwg fi

Jo =1

Strategy: Determine dynamics of test fcts, f;, g;. Subsequently,

Pt(a+(f)@(9)) = Po(a+(ft)@(9t))
— /dpdq go(aZ aq) fr(p) 9:(a)

-~

§(p—q) J(p)

_ / dp J(p) f:(p) g+(p)
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By the Pauli principle (momentum p occupied by < 1 fermion),

0 < J(p) = po(np) < 1.

Example of free Gibbs state: J(p) = 15 A=, Fermi-Dirac

distribution.

Analysis similar to Boltzmann limit for weakly disordered
Anderson model] !
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RELATED WORKS

(dynamics of Anderson model, excluding localization)
e Spohn [77]
e Erdos-Yau [00], Erdos [02], Erdos-Salmhofer-Yau [05]
e Lukkarinen [04], Lukkarinen-Spohn [05]
e Poupaud-Vasseur [03]
e Bourgain [02, 03]
e Shubin-Schlag-Wolff [02]
e Rodnianski-Schlag [03], Denisov [04], G. Perelman [04]
e C [05, 05, 06]
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Duhamel series and Feynman graphs

Pick NV € N, to be optimized later.

Write solutions f;, g of random Schrodinger eq, with test functions

as initial data, as truncated Duhamel series,

fo= 150+ 17

with remainder term f, (>N ), and

(<N) thn .

16



Duhamel term of order O(n™) is given by

At(n)(p) = n”eet/daeito‘/dko---dkné(p—ko)
{1;[ —a—ze”l}

in resolvent form, and in frequency space representation.

From contour deformation, and to keep e bounded V ¢,

17



Induces expansion of pair correlation,

pe(at(falg)) = pola(f)alg)) = > polat(f™)alg™))

n,neElyn

for Iy I:{l,...,N,>N}.
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Thus, for n,n < N, n := iﬁ € N (and ‘ZJ(U)* = ‘Za(—u)),

Elpo(a” () a(o™))] = *" ¢ [ dadaeo=

/dpo -~ dp2a+1 f(po) g(P2r+1) J (Pn) 0(Pr — Prt1)

2n41

]ZOE(pJ)_a_ZG :l;g_l E(pé)_&/‘l"lle
n 2n+1
E[ []Vetpi —pi1) ] Velps —p]_l)}
J=1 j=n+2

1 Il
Pn n O—1 ] — L——0 Py
~ 7’ -
:II III——:ﬂ\‘N —I!—‘\_\—— Il
--=Z- - =<7 S SN
Mee-—" " re- |—|_—‘—\\|—| Il o | A L 'm!
p p
n+1 LI L LI L LI L LI L n
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Proof strategy:

Complicated, high-dimensional singular integrals (resolvents !!).

Classification of Feynman graphs ([EY,ESY,C]):

Crossing and nesting diagrams yield small error terms.

Decorated ladder diagrams are dominant.

Sum of Feynman amplitudes of decorated ladder diagrams yields

solution of linear Boltzmann equation. []
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1.1.1. DISCUSSION OF RESULT

Consider Gibbs state for a free fermion gas,

B 1
Zb’,u

po(A) Tr(e_B(T_“mA) , Zgg = Tr(e_ﬁ(T_“N))

at inverse temperature 3, and with chemical potential u.

Main observation:

Momentum distribution (Fermi-Dirac) in free Gibbs state

. 1
Fo(p) = lim po(n,) = 1 + eBEP@)—p)

L—o0

is a stationary solution of the Boltzmann eq, V 0 < 8 < o0.
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Also true in zero temperature limit 3 — oo (in the weak sense)

1
11 eBEP -

X[ E(p) < pl.

Nontrivial provided that p > 0.
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Question:

Under time evolution generated by H,, does the momentum
distribution of the free Gibbs state drift towards a new equilibrium

with a smaller occupation probability of high momenta 7

Diffusive drift due to localizing effect of random potential ?

Answer:

Not in kinetic time scale; momentum distribution persists.

Method suggests persistence into diffusive time scale ([ESY]).

23



1.2. PERSISTENCE OF (QUASIFREENESS

A state pg is quasifree (determinantal) if

po(a™(fr)---a™(fr)a(gr) -~ algs))

= 0 det [po(CLJr(fi)a(gj))]lgi,jgr'

Easy to show that p;(A) is quasifree with probability 1.

But: Almost sure quasifreeness & E[p;( - )] is quasifree.
(quasifreeness is a nonlinear condition on determinants !)

In fact, Elp:(-)] is not quasifree for any n > 0.

However, it possesses a quasifree kinetic scaling limit:

24



Thm [C-Sasaki, JSP 08]
Assume py number conserving + translation invariant 4+ quasifree.

Then, for all test functions f;, g¢, and any 1" > 0, 2r-correlation fct

QC(Z?T)(fla'”vf?”; 917”'797“)

= lim lim E[pT/nz(a+<f1) e a+(f7«) a(gr)---a(gr))]

n—0 L—o0

— det [Qg)(fi; 9j)]1§z‘,j§r’

with the macroscopic 2-point correlation as before,

O (fi19) = /dpFT(p) fi(p) g5 (p),

and F(p) solves the previous linear Boltzmann equation. ]

25



Proof. Result

lim lim ‘ Elpr/m2(a™(f1)---a™(fr)alg1) -~ a(gr))]

n—0 L—o0o

2
— det [QE.F)(JCU 9j)]1§i,j§r =0

Proof similar to:

Thm [C, CMP ’06] Globally in T, convergence in higher mean,

nmEH<W}”Q>,J> _ <FT,J> } — 0

n—0

for any 1 < r < oo for weakly disordered Anderson model.

Here, WC(FnQ) is the macroscopic rescaled Wigner transform,
Fr(X,V) solves a linear Boltzmann eq, and J(X,V) is a test fct. [
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Among all Feynman graphs, only class of disconnected graphs is

dominant and O(1).
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2. INTERACTING (MEAN FIELD) FERMI GAS IN RANDOM MEDIUM

Joint work with I. Rodnianski.
Consider the time-dependent Hamiltonian
H(it) =T+ nV, + A\W(t)

where the fermion-fermion interaction is modeled by

W(t) = > v(x—y) {E[pi(adas)] ayay — E[pi(ayas)]azay,}

x,y

~ direct and exchange term (similar to Hartree-Fock approx.).

28



Dynamics of two-point correlation

0% a;aq )

= (E(p) — E(q)) pt(ayaq)

Tt / dud(u — p)pr(afag) — B(q — w)pe(atan)

Key observations:

e Not translation invariant for generic realization of V,.

But translation invariant on E-average !

e So far, equation does not close. But taking [E, it closes !

29



Translation invariant average

E[p:(at(f)alg))] = /dpmg(p)ut(p)

where

pe(p) = Elpi(ny )],

momentum distribution function, averaged over random potential.

Dynamics of p:(p) 7
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The average

solves

May set A = n, by translation invariance.

Note that the Hamiltonian

H(t) = T + nV, + AW (1)

also depends on the unknown p;(p) = E[pi(n, )]

= Self-consistent nonlinear evolution equation for p;(p)!
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Again, use 1 (randomness) as Duhamel expansion parameter.

Now, the " free evolution” (n = 0 but A # 0) is nonlinear !

Some key questions:

Dynamics at long time scales 7

Dependence of Boltzmann limit on ratio between A and n 7

Effects of nonlinearity 7

Persistence of Fermi-Dirac distribution ?

32



The regime A < Cn?

The interaction between electrons and the effect of the random

potential per time unit is comparable if A = Cn?.

Thm |[C-Rodnianski]

In the scaling limit determined by

T
t:—2 ) 77_>O ) ASO(UQ)a
i

the weak limit E|pp 2 ()] — F holds where
Or Fr(p) = 2 [ dud(E(w) - E(p)) (Fr(u) - Fr(p))

with Fo(p) = po(p).

The Hartree-Fock interactions cancel, due to translation invariance !
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Proof:

Instead of free evolution e*(t=5)E(P) yge

U, +(p) 1= et Ji ds' (B®)=A0xu, ()

and carry out Feynman graph expansion in powers of 7.

Maan difficulties:

e Free evolution operator depends on unknown pu;(p), and
satisfies nonlinear evolution equation

= Resolvent calculus unvazlable !
= Emtire analysis is based on stationary phase estimates.

e Recombination of decorated ladders much more complicated
due to nonlinear ”free” evolution.

= Phase cancellations and stationary phase.
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Lemma Let ks := ¥ % us. Then, uniformly in 7 > 0,

‘ / ds e is(E(u)—a—ie) j—iA ST Ry (W) ds’ é ) C
R e’ [E(u) —a|+e’

< (1+

where E(u) is the symbol of the nearest neighbor Laplacian on Z5.

Sketch of proof. We define

1 t—l—S
Feprs(u) := — / ds' kg (u) .
¢

s
Pauli principle = [R; 14s(u)| < Cp, uniformly in ¢ and s > 0.

The integral on the left hand side of (1) can be written as

() ::/ ds e 8(E(u)—aFARy 145 (u)) ,—€s
R+

To estimate it, we split R, into disjoint intervals

I =3¢, G+1)¢) » €Ny

35



of length

7

[E(u) —al

¢ =

We find

() = Z/ds(e_iS(E(“)_O‘+>‘Et,t+s(U))e—es
I.

j€2N0 J

4+ e (s FHO(E(u)—atARe i 4s4¢(u)) p—e(s+C) )

Y

where the second term in the bracket accounts for the integrals

over [; with j odd.
Evidently, e~ (F(w)=a) — ¢Fir — _1,
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Therefore, for 5 fixed,

/ ds (e—is(E(u)—a+>\Et,t+s(u))e_es
I

J
4 o HO(Bu) =0t A 4o (1) = e(5+) )

_ / ds e—is(E(u)—a—l—AEt,t_Fs(u)) ( e—es o e—e(s—I—C) )
I

+ / ds e—iS(E(W—O‘)e—G(S—l—C) (e—iASEt,tJrs(u) _ 6_i>‘(3+C)Et,t—|—s(u))
I

4+ ds e—iS(E(u)—a)e—€(8+C) (e—M(S+C)Et,t+s(’UJ) . €—i>\(8+C)Et,t+s+c(u) )
I

= (¥)1 + (%)2 + (x)3.

Clearly,

BRI </ dse”“e( = B —al’

j€2N, R4
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and

Cesy oA m
Z | ()2 </ dse “°N( = - (o) —al

j€2N, Ry

For (x)3, we observe that for s; < s9,

1 1 [irse
Fitttss(U) — Repqs, (u) = (———) ds' ke (u)

52 S1 Jt
1 t—|—82 t—|—81

+ —(/ —/ )ds’msf(u).
S1 t t

Since |kg ()| < Cy uniformly in ', we immediately obtain

_ L So — S
Rt t4s0 (W) — Repqs, (0)] < C 23 =
1

so that in particular,

S

Bt (W) = Bepas(u)] < €2
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Thus, we conclude that

Z (*) < CC)\ / ds M e—e(s-l—()
R+

T A
|E(u) —al €

< C

This proves that for |E(u) —a| > 0 and A = O(e),

C
< By —al

If |[E(u) — a| < e, then the trivial bound

(%) < / dse™ “° < ©
R €

is better, which ignores phase cancellations.
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In conclusion,

‘ / ds e~ 15 (E(u)—a—ie) j—iX [TT% ks (u) g4/ A C
R+

<+ 2) B —ari e

as claimed. ]
Use this estimate to adapt some resolvent estimates for the linear
case. This allows to control error terms (non-ladder diagrams).

To control dominant terms (decorated ladder), can’t lose the

information about the phase (can’t afford absolute values)

= explicit stationary phase analysis.
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The regime 1 = o(v/\)

In this regime, the limiting distribution is stationary.

Thm [C-Rodnianski]

In the scaling limit determined by

the weak limit E|pp,\(-)] — Fr holds, where

6’T FT(p) = O

with initial condition Fy(p) = po(p).
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The regime t = T/n? and A = O,(1)

This regime is very difficult to control.

Partial result: Characterization of stationary solutions.

Fized point equation: Let

pilp) = 22 Elpilafa)).

Expand right hand side of

/@ﬁﬁmmmm==EMﬂﬁfUM@%H
= Glue;n; A5 t; fi 9]

into truncated Duhamel series; fized point equation for .
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Thm |[C-Rodnianski]

Assume there exists a stationary fixed point

F(p) = Fr(p) = po(p)

in the kinetic scaling limit determined by
n
Then, it satisfies

F(p) = 2n / du6( Br(u) — Ba(p) ) F(u)

where E\(p) = E(p) — AT F)(p).

Energy renormalization !

43



OUTLOOK

Dynamical equations for scaling t = T'/n* and A = O(1).
= Very difficult problem.

Spatially inhomogenous initial data.

More detailed study of diffusive regime.
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