Shadowing orbits for dissipative PDEs (with G. Arioli)

(R) A few references

- (A1) Generalities, the Kuramoto-Sivashinsky (KS) equation
- (A2) The bifurcation diagram for the KS equation
- (B1) A periodic orbit for the KS equation
- (B2) Sketch of the proof
- (B3) General framework for each step
- (B4) Specifics for KS
- (B5) The computer-assisted part

- [1] Y. Kuramoto, T. Tsuzuki, Persistent propagation of concentration waves in dissipative media far from thermal equilibrium, Progr. Theor. Phys. 55, 365–369 (1976).
- [2] G.I. Sivashinsky, Nonlinear analysis of hydrodynamic instability in laminal flames I. Derivation of basic equations, Acta Astr. 4, 1177–1206 (1977).
- [3] J. Hyman, B. Nicolaenko, The KuramotoSivashinsky equation; A bridge between PDEs and dynamical systems, Physica 18D, 113-126 (1986).
- [4] C. Foias, B. Nicolaenko, G. Sell, R. Temam, Inertial manifolds for the KuramotoSivashinsky equation and an estimate of their lowest dimension, J. Math. Pures Appl. 67, 197-226 (1988).
- [5] J.G. Kevrekidis, B. Nicolaenko and J.C. Scovel, Back in the saddle again: a computer assisted study of the Kuramoto-Sivashinsky equation, SIAM J. Appl. Math. 50, 760–790 (1990).
- [6] M.S. Jolly, J.G. Kevrekidis and E.S. Titi, Approximate inertial manifolds for the Kuramoto-Sivashinsky equation: analysis and computations, Physica D 44, 38–60 (1990).
- [7] Yu.S. Ilyashenko, Global analysis of the phase portrait for the Kuramoto-Sivashinski equation,
 J. Dyn. Differ. Equations 4, 585–615 (1992).
- [8] P. Collet, J.-P. Eckmann, H. Epstein, J. Stubbe, A global attracting set for the Kuramoto-Sivashinsky equation, Commun. Math. Phys. 152, 203–214 (1993).
- [9] F. Christiansen, P. Cvitanović, V. Putkaradze, Spatiotemporal chaos in terms of unstable recurrent patterns, Nonlinearity 10, 55-70 (1997).

- [10] P. Zgliczyński, K. Mischaikow, Rigorous numerics for partial differential equations: The Kuramoto-Sivashinsky equation, Found. of Comp. Math. 1, 255–288 (2001).
- [11] P. Zgliczyński, K. Mischaikow, Towards a rigorous steady states bifurcation diagram for the Kuramoto-Sivashinsky equation a computer assisted rigorous approach, preprint 2003.
- [12] P. Zgliczyński, M. Gidea, Covering relations for multidimensional dynamical systems J. Differential Equations 202, 1, 32–58 (2004).
- [13] M. Gidea, P. Zgliczyński, Covering relations for multidimensional dynamical systems. II.
 J. Differential Equations 202, 1, 59–80 (2004).

- [14] P. Zgliczyński, Rigorous numerics for dissipative Partial Differential Equations II. Periodic orbit for the Kuramoto-Sivashinsky PDE - a computer assisted proof, Found. of Comp. Math. 4, 157-185 (2004).
- [15] G. Arioli, H. Koch, Computer-assisted methods for the study of stationary solutions in dissipative systems, applied to the Kuramoto-Sivashinski equation, preprint 2005, to appear in Arch. Ration. Mech. An.
- [16] P. Zgliczyński, Rigorous Numerics for Dissipative PDEs III. An effective algorithm for rigorous integration of dissipative PDEs, preprint 2008.
- [17] G. Arioli, H. Koch, Integration of dissipative PDEs: a case study, preprint 2010.

<u>The methods</u> apply in principle to general **dissipative evolution equations**

 $\dot{u}+(-\Delta)^m u+H_lpha(u,
abla u,\ldots)=0\,,$

for sufficiently simple domains and analytic nonlinearities H.

Start with stationary solutions $\dot{u} = 0$ and rewrite the resulting equation as

$$F_{\alpha}(u) = u$$
, where $F_{\alpha}(u) = -(-\Delta)^{-m} H_{\alpha}(u, \nabla u, \ldots)$,

The idea is to exploit the compactness of $(-\Delta)^{-m}$ to obtain good finite dim approximations.

<u>Example</u>. The one-dimensional **Kuramoto-Sivashinsky** (KS) equation

$$\partial_t u + 4\partial_x^4 u + \alpha \left(\partial_x^2 u + 2u \partial_x u \right) = 0, \qquad t \ge 0, \quad x \in [0, \pi],$$

with homogeneous Dirichlet boundary conditions.

A trivial solution is u = 0, for any value of α . It defines a line in the space of pairs (α, u) satisfying $F_{\alpha}(u) = u$. Other solutions **bifurcate** off this line at $\alpha = 4k^2$, with k a positive integer. The resulting solution curves bifurcate again ...

Determining the **bifurcation diagram** is simplified by the fact that many bifurcations involve the breaking of some symmetry.

Bifurcation diagram (L² norm versus α) for the **Kuramoto-Sivashinsky** equation

Theorem. [G. Arioli, H.K.] For $0 \le \alpha \le 80$, the stationary KS equation equation exhibits eleven pitchfork bifurcations (4, 16, 36, 64, P_1 , P_2 , iP_1 , iP_2 , iP_3^{\pm} , iP_4), four intersection bifurcations (I_1^{\pm}, I_2^{\pm}) , and eight fold bifurcations $(F^{\pm}, F_1^{\pm}, F_2^{\pm}, F_3^{\pm})$, connected by 44 smooth solution curves, as depicted below. These curves undergo no other bifurcations for $0 \le \alpha \le 80$.

Other results include bounds on the values of α for each bifurcation point, as well as the dimension of the unstable manifold and the L² norm of 30 selected solutions.

<u>Non-stationary orbits</u>. The goal is to solve initial value problems of the form

 $\dot{u}=Lu+G(u)\,,\qquad u(0)=
u\,,$

where L is linear and "very negative". Rewriting the equations as

$$\partial_t \left[e^{-tL} u \right] = e^{-tL} G(u) \,, \qquad u(0) = \nu \,,$$

integrating both sides, and then multiplying by e^{tL} , we get the integral equation

$$u(t) = e^{tL}\nu + \int_0^t e^{(t-s)L}G(u(s)) \, ds \,.$$
 (*)

<u>The flow Φ </u>. After defining a suitable Banach space \mathcal{X} of admissible initial conditions ν , solve the equation by iteration, on a space of continuous curves $u : [0, T] \to \mathcal{X}$. This yields the time-t maps $\Phi_t(\nu) = u(t)$ for times up to T.

Problem: Computer-estimates only work for small T > 0. Even composition of time-t maps gets soon out of control.

Way out: Shadowing of an approximate numerical orbit, using a sequence of boxes ...

<u>Non-stationary solutions for KS</u>. The most interesting are probably chaotic orbits, such as the ones found numerically in [F. Christiansen, P. Cvitanovic, V. Putkaradze, '97] for $\alpha \approx 137$.

For "simplicity", we focus on **periodic orbits**. Such orbits have also been constructed in [P. Zgliczyński, preprint '08], using different methods.

Recall KS:

$$\partial_t u = \mathcal{L}u - \alpha \partial_x (u^2), \qquad \mathcal{L} = -4\partial_x^4 - \alpha \partial_x^2.$$

Our "standard form" is obtained by splitting $\mathcal{L} = L + L'$, with L < 0, and rewriting

$$\partial_t u = L u + G(u)\,, \qquad G(u) = L' u - lpha \partial_x(u^2)\,.$$

Theorem. [G. Arioli, H.K.] The KS equation for $\alpha = 150$ has a hyperbolic periodic orbit with period $\tau = 0.00214688...$ Some associated Poincaré map has a simple eigenvalue μ_1 of modulus $|\mu_1| > 4.8$, and the remaining eigenvalues $\mu_2, \mu_3, ...$ lie in the disk $|\mu_n| < 0.69$.

Remarks.

- The derivative of the flow is estimated via the corresponding integral operator.
- The spaces used are far from optimal.
- The shadowing procedures uses M = 4293 rectangular boxes.

Sketch of the general procedure

<u>The flow Φ </u>. Convert the integral equation (*) to a fixed point equation for curves $u : [0,T] \to \mathcal{X}$. Evaluating the solution u at time t defines the time-t map, $\Phi_t(\nu) = u(t)$. Here, t can be replaced by an interval.

<u>Local Poincaré map</u>. Given a codimension one affine subspace S transversal to the flow, define $P(\nu) = \Phi_{t(\nu)}(\nu)$, with $t(\nu)$ the smallest time t > 0 where $\Phi_t(\nu) \in S$.

A bound on $t(\nu)$ is an interval [a, c] such that $\Phi_a(\nu)$ and $\Phi_c(\nu)$ lie on different sides of S. Then $\Phi_{[a,c]}(\nu)$ is an enclosure for $P(\nu)$.

<u>The local Poincaré maps P_j </u>. Using an approximate orbit $t \mapsto \bar{u}(t)$, choose M milestones \bar{u}_j along this orbit, and Poincaré section $S_j = \bar{u}_j + X_j$ transversal to \bar{u} . Define $P_j : S_{j-1} \to S_j$ as above.

Shadowing. In each section S_j choose an appropriate box B_j and check covering condition for $P_j(B_{j-1})$ and B_j . Here we use the **derivative of** Φ_t .

In the periodic case (j = 0 is identified with j = M) this implies the existence of a fixed point for the full Poincaré map $\Psi = P_M \circ \ldots \circ P_2 \circ P_1$ and a closed orbit u for the flow.

<u>Linearized Poincaré maps</u>. Let u_j be the point where the orbit u intersects S_j . Estimating the velocities $\dot{u}_j = Lu_j + G(u_j)$ gives bounds on the **derivatives** $DP_j(u_{j-1})$.

<u>Hyperbolicity</u>. Check cone conditions (linear analogue of covering conditions) for each $DP_j(u_{j-1})$. Then $D\Psi(u_0)$ satisfies a cone condition, and hyperbolicity follows.

General framework

Integration. Rewrite (*) as fixed point problem for $K_{\nu}(w) = w$ for $w(t) = u(t) - e^{tL}\nu$, where

$$ig(K_
u(w)ig)(t)=\int_0^t e^{(t-s)L}Gig(w(s)+e^{sL}
uig)\,ds\,,\qquad 0\leq t\leq T.$$

Since the integrand can vary rapidly in t near t = 0, partitioning J = [0, T] into n subintervals $J_i = [t_{i-1}, t_i]$, with the partition being **finer near** $t_0 = 0$, than near $t_n = T$, and ...

Assuming the eigenfunction $\{v_k\}$ of L span a dense subspace of \mathcal{X} , define $\mathcal{C}(J, \mathcal{X})$ to be space of all functions $w(t) = \sum_k w_k(t) v_k$ that have continuous coefficients $w_k : J \to \mathbb{R}$, and a finite norm

$$||w|| = \max_{i} \sum_{k} \sup_{t \in J_{i}} ||w_{k}(t)v_{k}||.$$

The following is specific to KS (with \mathcal{X} defined later).

Lemma 1. K_{ν} is a compact map on $\mathcal{C}(J, \mathcal{X})$, has a unique fixed point w for each $\nu \in \mathcal{X}$, and the map $\nu \mapsto w$ is of class C^1 . The flow $(t, \nu) \mapsto u(t)$ is of class C^1 and compact, for $0 < t \leq T$.

Shadowing. In the case of a single expanding direction, we can use the following

Lemma 2. Consider a Banach space $X = \mathbb{R} \oplus Z$, and let V be the closed unit ball in Z. Let F be a continuous and compact map

 $[-1,1] \times V \xrightarrow{F} \mathbb{R} \times V,$ $[-1,-\vartheta] \times V \xrightarrow{F} (-\infty,-1] \times V,$ $[\vartheta,1] \times V \xrightarrow{F} [1,\infty) \times V,$

for some positive $\vartheta \leq 1$. Then F has a fixed point in $[-\vartheta, \vartheta] \times V$.

Assume $\mathcal{X} = \mathcal{Y} \oplus \mathcal{V} \oplus \mathcal{Z}$, where \mathcal{Y} and \mathcal{V} are one-dimensional subspaces of \mathcal{X} (in our case roughly the unstable and velocity directions of the flow). Denote by U and V the closed unit balls in \mathcal{Y} and \mathcal{Z} , respectively.

Definition. A <u>section</u> (of \mathcal{X}) is codimension one affine subspace of \mathcal{X} . A <u>box</u> in a section S is the image of $U \times V$ under a bi-continuous affine map $\psi : \mathcal{Y} \oplus \mathcal{Z} \to S$.

Definition. Let $B_i = \psi_i(U \times V)$ and $B_j = \psi_j(U \times V)$ be boxes in two section S_i and S_j , respectively. Given a map $f : B_i \to S_j$, we say that B_i f-covers B_j if the map $F : U \times V \to \mathcal{Y} \oplus \mathcal{Z}$, defined by $F = \psi_j^{-1} \circ f \circ \psi_i$, satisfies the hypotheses of of Lemma 2, for some $\vartheta < 1$. For simplicity, we identified here \mathcal{Y} with \mathbb{R} , and U with [-1, 1].

Corollary 3. If for each j, the box B_{j-1} P_j -covers B_j , then the Poincaré map $\Psi : S_0 \to S_0$, defined by $\Psi = P_M \circ \ldots \circ P_2 \circ P_1$, has a fixed point in B_0 .

Linearized Poincaré map at $u_{j-1} \in S_{j-1}$.

$$DP_j(u_{j-1})w = D\Phi_{t(u_{j-1})}(u_{j-1})w - rac{\eta_j(D\Phi_{t(u_j)}(u_{j-1})w)}{\eta_j(\dot{u}_j)}~\dot{u}_j\,.$$

Here, $\dot{u}_j = Lu_j + G(u_j)$ is the velocity at $u_j = P_j(u_{j-1})$. And η_j is the linear functional that defines the hyperplane X_j at the section $S_j = \bar{u}_j + X_j$.

Consider now the points u_j where the periodic orbit intersects the Poincaré planes S_j . The *low-frequency parts* $\ell_j = \mathbb{P}_L \dot{\boldsymbol{u}}_j$ are estimated explicitly in our construction of the orbit. To estimate the *high-frequency parts* $\boldsymbol{h}_j = \mathbb{P}_H \dot{\boldsymbol{u}}_j$ use that $\dot{\boldsymbol{u}}_j = D\Phi_{t(u_{j-1})}(u_{j-1})\dot{\boldsymbol{u}}_{j-1}$.

Lemma 4. Let $k_j = \mathbb{P}_H D\Phi_{t(u_{j-1})}(u_{j-1})\ell_{j-1}$ and $D_j = \mathbb{P}_H D\Phi_{t(u_{j-1})}(u_{j-1})\mathbb{P}_H$. Then $\|h_j\| \le \|k_j\| + \|D_j\| \|h_{j-1}\|, \quad j = 1, 2, \dots, M.$

In particular, if $||k_j|| \le b$ and $||D_j|| \le a < 1$ for all j, then $||h_j|| \le (1-a)^{-1}b$.

<u>Hyperbolicity</u>. In the case of a single expanding direction, we can use the following

Lemma 5. Let $A \neq 0$ be a bounded linear operator on a real Banach space $X = Y \oplus Z$, with Y one-dimensional. Thus, if $y \in Y$ and $z \in Z$, we have a unique decomposition

 $A(y+z) = y' + z', \qquad y' \in Y, \ z' \in Z.$

Assume now that A is compact, and that there exists positive real numbers $\beta < \alpha$, such that $||z'|| \leq \beta \max\{||y||, ||z||\}$, and such that $||y'|| \geq \alpha ||y||$ whenever $||y|| \geq ||z||$. Then A has a simple eigenvalue λ of modulus $|\lambda| \geq \alpha$, and no other eigenvalue of modulus $> \beta$.

Definition. Let $X = \mathcal{Y} \oplus \mathcal{Z}$, and let $\alpha > \beta$ be positive real numbers. Given two sections $\bar{u}_i + \psi_i(X_i)$ and $\bar{u}_j + X_j = \psi_j(X)$ of \mathcal{X} , and a linear map $B : X_i \to X_j$, we say that B satisfies the (α, β) cone condition, if $A = D\psi_i^{-1}BD\psi_i$ satisfies the hypotheses of Lemma 5.

Consider again the local Poincaré maps $P_j: S_{j-1} \to S_j$ described earlier. Denote by u_j the intersection of the periodic orbit with the Poincaré plane S_j .

Corollary 6. If for each j, the derivative $DP_j(u_j)$ satisfies a (α_j, β_j) cone condition, then $D\Psi(u_0)$ has a simple eigenvalue μ_1 of modulus $|\mu_1| \ge \prod_j \alpha_j$ and no other spectrum outside the disk $|\mu| \le \prod_j \beta_j$.

<u>The KS equation</u> $\partial_t u = Lu + G(u)$. Recall that

$$G(u) = L'u - lpha \partial_x(u^2)\,, \qquad L+L' = -4\partial_x^4 - lpha \partial_x^2\,,$$

with Dirichlet boundary conditions on $[0, \pi]$. The eigenvalues of -L and -L' are

$$\lambda_k = \begin{cases} 0, & \text{if } k \le \kappa; \\ 4k^4 - \alpha k^2 & \text{if } k > \kappa; \end{cases} \qquad \lambda'_k = \begin{cases} 4k^4 - \alpha k^2 & \text{if } k \le \kappa; \\ 0 & \text{if } k > \kappa; \end{cases} \tag{0.1}$$

with eigenvectors $\boldsymbol{v}_{\boldsymbol{k}}(\boldsymbol{x}) = \sin(\boldsymbol{k}\boldsymbol{x})$. Here, $\kappa \geq \sqrt{\alpha}/2$, so that $\alpha k^2 - 4k^4 \leq 0$ for $k \geq \kappa$. <u>Function space</u> used: $\mathcal{X} = \mathcal{X}_1^o$ with $\rho = 2^{-7}$.

Given $\rho > 0$, and a nonnegative integer K, define

 \mathcal{X}_{κ}^{o} : Space of odd 2π -periodic real analytic functions on the strip $|\mathrm{Im}\,x| < \rho$,

$$u = \sum_{k \ge K} u_k oldsymbol{v}_k \,, \qquad \|u\| \stackrel{\mathrm{def}}{=} \sum_{k \ge K} |u_k| e^{
ho k} \, < \infty \,.$$

 \mathcal{X}_{κ}^{e} : Analogous space of even 2π -periodic functions.

The computer-assisted proof uses a type

Ball: $S = (S.C, S.R) \in \text{Rep} \times \text{Radius}.$

representing intervals in \mathbb{R} , or balls in a Banach space X,

 $\mathcal{B}(S) = (S.C) + (S.R)\mathbb{U}_{\mathbb{R}}, \qquad \mathcal{B}(S,X) = (S.R)\mathbb{U}_X.$

where $U_x = \{x \in X : ||x|| \le 1\}$.

The **representable sets** in \mathcal{X}_1^o are taken to be of the form

$$\mathcal{B}(\mathtt{F}) = \sum_{K=1}^{D} \mathcal{B}(\mathtt{F}.\mathtt{C}(\mathtt{K})) \sin(\mathtt{K}.) + \sum_{K=1}^{2D} \mathcal{B}(\mathtt{F}.\mathtt{E}(\mathtt{K}), \mathcal{X}_{K}^{o}), \qquad \mathtt{F} \in \mathtt{SFourier}.$$

The representable sets in \mathcal{X}_0^e are defined analogously. Both are associated with data of type **SFourier**, which is an instantiation (**FCoeff** \Rightarrow **Ball**) of

Fourier: F=(F.T,F.C,F.E), with F.T encoding the type (even or odd, domain ρ), and F.C: array [0..D] of FCoeff; F.E: array [0..2*D] of FCoeff;

Implement **bounds** hierarchically, starting with simple and/or generic types, then for more complex types; first for basic operations, then for functions like F_{α} . $\mathcal{C}(J, \mathcal{X}_{\kappa}^{o})$ is the Banach space of all continuous functions $w: J \to \mathcal{X}_{\kappa}^{o}$ with ...

$$w(t) = \sum_{k \ge K} w_k(t) \boldsymbol{v}_k, \quad \|w\| = \max_i \|w\|_i, \quad \|w\|_i = \sum_{k \ge K} e^{\rho k} \max_{t \in J_i} |w_k(t)|.$$

Simple representable sets for these spaces associated with data of type

 $\mathcal{B}(\mathsf{P.C})$: all polynomials of degree $\leq \mathsf{PDeg}$, whose K-th coefficient belongs to $\mathcal{B}(\mathsf{P.C}(\mathsf{K}), \mathbb{R})$. The polynomials on J = [0, T] are expanded about $\frac{2}{3}T$.

 $\mathcal{B}(\mathsf{P}.\mathsf{E},\mathcal{X}^o_{\scriptscriptstyle K})$: all functions $v \in \mathcal{C}(J,\mathcal{X}^o_{\scriptscriptstyle K})$ such that $\|v\|_{\mathsf{T}} \leq \mathsf{P}.\mathsf{E}(\mathsf{I}).\mathsf{R}$ for all I .

The representable sets for $\mathcal{C}(J, \mathcal{X}_1^o)$ are associated with data of type **TFourier**, which is an instantiation (FCoeff \Rightarrow ContFun) of Fourier. In other words,

$$\mathcal{B}(\mathtt{F}) = \sum_{K=0}^{D} \mathcal{B}(\mathtt{F}.\mathtt{C}(\mathtt{K})) \sin(\mathtt{K}.) + \sum_{K=0}^{2D} \mathcal{B}(\mathtt{F}.\mathtt{E}(\mathtt{K}), \mathcal{X}_{K}^{o}), \qquad \mathtt{F} \in \mathtt{TFourier}.$$

The representable sets for $\mathcal{C}(J, \mathcal{X}_0^e)$ are defined analogously.

Now implement bounds Contr, DContr, ContrFix, DContrFix, Phi, DPhi, ... on the maps K_{ν} , $\partial_{\nu}K_{\nu}$, ...

To obtain decent error bounds for Contr, we decompose $K_{\nu}(w) = P(\nu, w) + Q(\nu, w)$, where P is linear and Q quadratic,

$$Q(\nu, w) = -\alpha \int_0^t e^{(t-s)L^+} \partial_x \left[w + e^{sL} \nu \right]^2.$$

Then split Q into terms $Q^{(n)}$ that are homogeneous of degree n in w. After rewriting the result in terms of Fourier coefficients, we end up with integrals like

$$(Q_m^{(1+)}(\nu, w))(t) = -\alpha m \sum_{k+\ell=m} \nu_k \int_0^t e^{-\lambda_m (t-s)} e^{-\lambda_k s} w_\ell(s) \, ds \, ,$$

and use estimates like

$$\left\|Q^{(1+)}(\nu,w)\right\|_{i} \leq 2\alpha \|\nu\| \|w\| \sup_{\substack{k \in \mathcal{K} \\ \ell \in \mathcal{L}}} \left[\frac{k+\ell}{(\lambda_{k+\ell}-\lambda_{k})+2/t_{i}}\right] e^{-\lambda_{k}t_{i-1}}$$

Here, \mathcal{K} and \mathcal{L} are the frequency ranges for ν and w, respectively. The **sup** is estimated by the program (beforehand), using monotonicity properties of [...].

ContrFix first computes an approximate fixed point w for K_{ν} . Then it encloses w in successively larger sets $\mathcal{B}(F)$ until one of them is mapped into itself by Contr.

The same strategy is applied for DContr and DContrFix.

Evaluating the result of ContrFix at a specified time $t \in J$ yields a bound Phi on the flow $\Phi : (t, \nu) \mapsto u(t)$. As much as possible of the above is kept hidden at the higher "dynamical systems" level.

The package Boxes uses data types Vec to describe sets in \mathcal{X}_1^o . V(1..N) contains bounds on the first N Fourier coefficients, and V(N+1) is a bound on the norm of all "higher order" terms.

Other data types include LBasis, Frame, Box, TBox, ...

Roughly speaking, a Box represents a set $B = C + L(R_1) \times R_2 \times H$, with C: the center of the Box. $L(R_1)$: the image of $R_1 = [-1, 1] \times \{0\} \times [-1, 1]^{M-2}$ under an linear transformation L on \mathbb{R}^M . R_2 : a rectangle $R_2 = [-r_{M+1}, r_{M+1}] \times \ldots \times [-r_N, r_N]$. H: a "higher order" ball.

The zero-thickness direction of $L(R_1)$ corresponds to the Poincaré section.

A bound on the **local Poincaré map** is obtained by determining a time interval $T = [t - \varepsilon, t + \varepsilon]$ such that the flow-images of *B* at the two times $t \pm \varepsilon$ lie on opposite sides of the Poincaré section (at the destination point).

The 4293 boxes used in our shadowing procedure have been determined numerically.

The **box directions** fall into 4 classes.

<u>low</u>: The first 8 directions are roughly eigendirections of the return map (for the entire orbit). <u>mid-low</u>: The next 12 directions are $(\mathbb{I} - P)\sin(k \cdot)$, for $k = 9, 10, \ldots, 20 = M$.

Here, P is an approximation to the "low" spectral projection. <u>mid-high</u>: Simply $\sin(k \cdot)$ for $k = 21, 22, \ldots, 40 = N$. <u>high</u>: All higher order modes (k > N). Mapping a box $B = b + L(R_1)$, where $b = C + R_2 + H$.

Consider: a map $f: B \to \text{somewhere}$, with f(0) = 0, for every x a bound F(x) on Df(B)x (a convex set containing ...) the "corners" $b + w_i$ of B, where w_1, w_2, \ldots, w_m are the corners of $L(R_1)$.

Bound on f from bound on Df: By convexity,

$$f(x) = \int_0^1 \!\! Df(tx) x \;\in\; F(x)\,, \qquad orall x \in B\,.$$

<u>Convex combination of corners</u>: Every $x \in B$ admits a unique representation

$$x = \xi + \sum_{i} s_{i} w_{i}, \qquad \xi \in b, \quad s_{i} \in [0, 1], \quad \sum_{i} s_{i} = 1.$$

We have

$$f(x) = \int_0^1 dt \, Df(tx) x = \sum_i s_i \int_0^1 dt \, Df(tx) (\xi + w_i) \; \in \; \sum_i s_i F(b + w_i) \, .$$

Notice: The bounds $\{F(b+w_i)\}_{i=1}^m$ are sufficient to estimate f(x) for arbitrary $x \in B$.

The End