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[12] P. Zgliczyński, M. Gidea, Covering relations for multidimensional dynamical systems J. Dif-

ferential Equations 202, 1, 32–58 (2004).
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The methods apply in principle to general dissipative evolution equations

u̇ + (−∆)mu + Hα(u,∇u, . . .) = 0 ,

for sufficiently simple domains and analytic nonlinearities H.

Start with stationary solutions u̇ = 0 and rewrite the resulting equation as

Fα(u) = u , where Fα(u) = −(−∆)−mHα(u,∇u, . . .) ,

The idea is to exploit the compactness of (−∆)−m to obtain good finite dim approximations.

Example. The one-dimensional Kuramoto-Sivashinsky (KS) equation

∂tu+ 4∂4
xu+ α

(

∂2
xu+ 2u∂xu

)

= 0 , t ≥ 0, x ∈ [0, π] ,

with homogeneous Dirichlet boundary conditions.

A trivial solution is u = 0 , for any value of α. It defines a line in the space of pairs (α, u)
satisfying Fα(u) = u. Other solutions bifurcate off this line at α = 4k2, with k a positive
integer. The resulting solution curves bifurcate again . . .

Determining the bifurcation diagram is simplified by the fact that many bifurcations involve
the breaking of some symmetry.
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Bifurcation diagram (L2 norm versus α) for the Kuramoto-Sivashinsky equation
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Theorem. [ G. Arioli, H.K. ] For 0 ≤ α ≤ 80, the stationary KS equation equation exhibits eleven
pitchfork bifurcations (4, 16, 36, 64, P1, P2, iP1, iP2, iP

±
3 , iP4), four intersection bifurcations

(I±1 , I±2 ), and eight fold bifurcations (F±, F±
1 , F±

2 , F±
3 ), connected by 44 smooth solution curves,

as depicted below. These curves undergo no other bifurcations for 0 ≤ α ≤ 80.
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Other results include bounds on the values of α for each bifurcation point, as well as the dimension
of the unstable manifold and the L2 norm of 30 selected solutions.
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Non-stationary orbits. The goal is to solve initial value problems of the form

u̇ = Lu + G(u) , u(0) = ν ,

where L is linear and “very negative”. Rewriting the equations as

∂t

[

e−tLu
]

= e−tLG(u) , u(0) = ν ,

integrating both sides, and then multiplying by etL, we get the integral equation

u(t) = etLν +

∫ t

0

e(t−s)LG(u(s))ds . (i)

The flow Φ. After defining a suitable Banach space X of admissible initial conditions ν,
solve the equation by iteration, on a space of continuous curves u : [0, T ] → X .
This yields the time-t maps Φt(ν) = u(t) for times up to T .

Problem: Computer-estimates only work for small T > 0.
Even composition of time-t maps gets soon out of control.

Way out: Shadowing of an approximate numerical orbit, using a sequence of boxes . . .
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Non-stationary solutions for KS. The most interesting are probably chaotic orbits, such as
the ones found numerically in [ F. Christiansen, P. Cvitanovic, V. Putkaradze, ’97 ] for α ≈ 137.

For “simplicity”, we focus on periodic orbits.
Such orbits have also been constructed in [ P. Zgliczyński , preprint ’08 ], using different methods.

Recall KS:
∂tu = Lu− α∂x(u2) , L = −4∂4

x − α∂2
x .

Our “standard form” is obtained by splitting L = L+ L′, with L < 0, and rewriting

∂tu = Lu + G(u) , G(u) = L′u − α∂x(u
2) .

Theorem. [ G. Arioli, H.K. ] The KS equation for α = 150 has a hyperbolic periodic orbit with
period τ = 0.00214688 . . .. Some associated Poincaré map has a simple eigenvalue µ1 of modulus
|µ1| > 4.8, and the remaining eigenvalues µ2, µ3, . . . lie in the disk |µn| < 0.69.

Remarks.
• The derivative of the flow is estimated via the corresponding integral operator.
• The spaces used are far from optimal.
• The shadowing procedures uses M = 4293 rectangular boxes.
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Sketch of the general procedure

The flow Φ. Convert the integral equation (i) to a fixed point equation for curves u : [0, T ] → X .
Evaluating the solution u at time t defines the time-t map, Φt(ν) = u(t) .
Here, t can be replaced by an interval.

Local Poincaré map. Given a codimension one affine subspace S transversal to the flow, define
P (ν) = Φt(ν)(ν) , with t(ν) the smallest time t > 0 where Φt(ν) ∈ S.

A bound on t(ν) is an interval [a, c] such that Φa(ν) and Φc(ν) lie on different sides of S.
Then Φ[a,c](ν) is an enclosure for P (ν).

The local Poincaré maps Pj . Using an approximate orbit t 7→ ū(t), choose M milestones ūj along
this orbit, and Poincaré section Sj = ūj +Xj transversal to ū. Define Pj : Sj−1 → Sj as above.

Shadowing. In each section Sj choose an appropriate box Bj and check covering condition for
Pj(Bj−1) and Bj . Here we use the derivative of Φt.

In the periodic case (j = 0 is identified with j = M) this implies the existence of a fixed point
for the full Poincaré map Ψ = PM ◦ . . . ◦ P2 ◦ P1 and a closed orbit u for the flow.

Linearized Poincaré maps. Let uj be the point where the orbit u intersects Sj . Estimating the
velocities u̇j = Luj +G(uj) gives bounds on the derivatives DPj(uj−1).

Hyperbolicity. Check cone conditions (linear analogue of covering conditions) for eachDPj(uj−1).
Then DΨ(u0) satisfies a cone condition, and hyperbolicity follows.
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General framework

Integration. Rewrite (i) as fixed point problem for Kν(w) = w for w(t) = u(t) − etLν , where

(

Kν(w)
)

(t) =

∫ t

0

e(t−s)LG
(

w(s) + esLν
)

ds , 0 ≤ t ≤ T.

Since the integrand can vary rapidly in t near t = 0, partitioning J = [0, T ] into n subintervals
Ji = [ti−1, ti] , with the partition being finer near t0 = 0, than near tn = T , and . . .

Assuming the eigenfunction {vk} of L span a dense subspace of X , define C(J,X ) to be space of
all functions w(t) =

∑

k wk(t)vk that have continuous coefficients wk : J → R, and a finite norm

‖w‖ = max
i

∑

k

sup
t∈Ji

‖wk(t)vk‖ .

The following is specific to KS (with X defined later).

Lemma 1. Kν is a compact map on C(J,X ), has a unique fixed point w for each ν ∈ X , and the
map ν 7→ w is of class C1. The flow (t, ν) 7→ u(t) is of class C1 and compact, for 0 < t ≤ T .
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Shadowing. In the case of a single expanding direction, we can use the following

Lemma 2. Consider a Banach space X = R ⊕ Z, and let V be the closed unit ball in Z. Let F
be a continuous and compact map

[−1, 1] × V
F−→ R × V ,

[−1,−ϑ] × V
F−→ (−∞,−1] × V ,

[ϑ, 1] × V
F−→ [1,∞) × V ,

for some positive ϑ ≤ 1. Then F has a fixed point in [−ϑ, ϑ] × V .

Assume X = Y ⊕ V ⊕ Z, where Y and V are one-dimensional subspaces of X
(in our case roughly the unstable and velocity directions of the flow).
Denote by U and V the closed unit balls in Y and Z, respectively.

Definition. A section (of X ) is codimension one affine subspace of X . A box in a section S is
the image of U × V under a bi-continuous affine map ψ : Y ⊕ Z → S.

Definition. Let Bi = ψi(U × V ) and Bj = ψj(U × V ) be boxes in two section Si and Sj ,
respectively. Given a map f : Bi → Sj , we say that Bi f -covers Bj if the map F : U×V → Y⊕Z,
defined by F = ψ−1

j ◦ f ◦ ψi , satisfies the hypotheses of of Lemma 2, for some ϑ < 1.
For simplicity, we identified here Y with R, and U with [−1, 1].

Corollary 3. If for each j, the box Bj−1 Pj-covers Bj , then the Poincaré map Ψ : S0 → S0 ,
defined by Ψ = PM ◦ . . . ◦ P2 ◦ P1 , has a fixed point in B0 .
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Linearized Poincaré map at uj−1 ∈ Sj−1 .

DPj(uj−1)w = DΦt(uj−1)(uj−1)w −
ηj(DΦt(uj)(uj−1)w)

ηj(u̇j)
u̇j .

Here, u̇j = Luj +G(uj) is the velocity at uj = Pj(uj−1).
And ηj is the linear functional that defines the hyperplane Xj at the section Sj = ūj +Xj .

Consider now the points uj where the periodic orbit intersects the Poincaré planes Sj .

The low-frequency parts ℓj = PLu̇j are estimated explicitly in our construction of the orbit.
To estimate the high-frequency parts hj = PHu̇j use that u̇j = DΦt(uj−1)(uj−1)u̇j−1 .

Lemma 4. Let kj = PHDΦt(uj−1)(uj−1)ℓj−1 and Dj = PHDΦt(uj−1)(uj−1)PH . Then

‖hj‖ ≤ ‖kj‖ + ‖Dj‖‖hj−1‖ , j = 1, 2, . . . ,M.

In particular, if ‖kj‖ ≤ b and ‖Dj‖ ≤ a < 1 for all j, then ‖hj‖ ≤ (1 − a)−1b.
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Hyperbolicity. In the case of a single expanding direction, we can use the following

Lemma 5. Let A 6= 0 be a bounded linear operator on a real Banach space X = Y ⊕Z, with Y
one-dimensional. Thus, if y ∈ Y and z ∈ Z, we have a unique decomposition

A(y + z) = y′ + z′ , y′ ∈ Y, z′ ∈ Z .

Assume now that A is compact, and that there exists positive real numbers β < α, such that
‖z′‖ ≤ βmax{‖y‖, ‖z‖} , and such that ‖y′‖ ≥ α‖y‖ whenever ‖y‖ ≥ ‖z‖ . Then A has a simple
eigenvalue λ of modulus |λ| ≥ α, and no other eigenvalue of modulus > β.

Definition. Let X = Y ⊕ Z, and let α > β be positive real numbers. Given two sections
ūi + ψi(Xi) and ūj +Xj = ψj(X) of X , and a linear map B : Xi → Xj , we say that B satisfies
the (α, β) cone condition , if A = Dψ−1

j BDψi satisfies the hypotheses of Lemma 5.

Consider again the local Poincaré maps Pj : Sj−1 → Sj described earlier.
Denote by uj the intersection of the periodic orbit with the Poincaré plane Sj .

Corollary 6. If for each j, the derivative DPj(uj) satisfies a (αj , βj) cone condition, then
DΨ(u0) has a simple eigenvalue µ1 of modulus |µ1| ≥

∏

j αj and no other spectrum outside the
disk |µ| ≤

∏

j βj .
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The KS equation ∂tu = Lu + G(u) . Recall that

G(u) = L′u − α∂x(u
2) , L + L′ = −4∂4

x − α∂2
x ,

with Dirichlet boundary conditions on [0, π]. The eigenvalues of −L and −L′ are

λk =

{

0, if k ≤ κ;
4k4 − αk2 if k > κ;

λ′k =

{

4k4 − αk2 if k ≤ κ;
0 if k > κ;

(0.1)

with eigenvectors vk(x) = sin(kx) . Here, κ ≥ √
α/2, so that αk2 − 4k4 ≤ 0 for k ≥ κ.

Function space used: X = X o
1 with ρ = 2−7.

Given ρ > 0, and a nonnegative integer K, define

X o
K

: Space of odd 2π-periodic real analytic functions on the strip |Imx| < ρ,

u =
∑

k≥K

ukvk , ‖u‖ def
=

∑

k≥K

|uk|eρk <∞ .

X e
K

: Analogous space of even 2π-periodic functions.
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The computer-assisted proof uses a type

Ball: S = (S.C, S.R) ∈ Rep× Radius.

representing intervals in R, or balls in a Banach space X,

B(S) = (S.C) + (S.R)UR , B(S, X) = (S.R)UX .

where UX = {x ∈ X : ‖x‖ ≤ 1} .

The representable sets in X o
1 are taken to be of the form

B(F) =

D
∑

K=1

B(F.C(K)) sin(K .) +

2D
∑

K=1

B(F.E(K),X o
K
) , F ∈ SFourier .

The representable sets in X e
0 are defined analogously. Both are associated with data of type

SFourier, which is is an instantiation (FCoeff ⇒ Ball) of

Fourier: F=(F.T,F.C,F.E), with F.T encoding the type (even or odd, domain ρ), and

F.C: array [0..D] of FCoeff;

F.E: array [0..2*D] of FCoeff;

Implement bounds hierarchically, starting with simple and/or generic types, then for more com-
plex types; first for basic operations, then for functions like Fα .
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C(J,X o
K
) is the Banach space of all continuous functions w : J → X o

K
with . . .

w(t) =
∑

k≥K

wk(t)vk , ‖w‖ = max
i

‖w‖i , ‖w‖i =
∑

k≥K

eρk max
t∈Ji

|wk(t)| .

Simple representable sets for these spaces associated with data of type

ContFun: P=(P.C,P.E), where
P.C: array [0..PDeg] of Ball;

P.E: array [1..NErr] of Ball; (nonnegative)

B(P.C) : all polynomials of degree ≤ PDeg, whose K-th coefficient belongs to B(P.C(K),R).
The polynomials on J = [0, T ] are expanded about 2

3T .

B(P.E,X o
K
) : all functions v ∈ C(J,X o

K
) such that ‖v‖

I
≤ P.E(I).R for all I.

The representable sets for C(J,X o
1 ) are associated with data of type TFourier, which is an in-

stantiation (FCoeff ⇒ ContFun) of Fourier. In other words,

B(F) =
D

∑

K=0

B(F.C(K)) sin(K .) +
2D
∑

K=0

B(F.E(K),X o
K
) , F ∈ TFourier .

The representable sets for C(J,X e
0 ) are defined analogously.

Now implement bounds Contr, DContr, ContrFix, DContrFix, Phi, DPhi, ...

on the maps Kν , ∂νKν , . . .
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To obtain decent error bounds for Contr, we decompose Kν(w) = P (ν, w) +Q(ν, w) ,
where P is linear and Q quadratic,

Q(ν, w) = −α
∫ t

0

e(t−s)L
+

∂x

[

w + esLν
]2

.

Then split Q into terms Q(n) that are homogeneous of degree n in w. After rewriting the result
in terms of Fourier coefficients, we end up with integrals like

(

Q(1+)
m (ν, w)

)

(t) = −αm
∑

k+ℓ=m

νk

∫ t

0

e−λm(t−s)e−λkswℓ(s) ds ,

and use estimates like

∥

∥Q(1+)(ν, w)
∥

∥

i
≤ 2α‖ν‖‖w‖ sup

k∈K

ℓ∈L

[

k + ℓ

(λk+ℓ − λk) + 2/ti

]

e−λkti−1 .

Here, K and L are the frequency ranges for ν and w, respectively.
The sup is estimated by the program (beforehand), using monotonicity properties of [. . .].

ContrFix first computes an approximate fixed point w for Kν . Then it encloses w in successively
larger sets B(F) until one of them is mapped into itself by Contr.

The same strategy is applied for DContr and DContrFix.

Evaluating the result of ContrFix at a specified time t ∈ J
yields a bound Phi on the flow Φ : (t, ν) 7→ u(t) .
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As much as possible of the above is kept hidden at the higher “dynamical systems” level.

The package Boxes uses data types Vec to describe sets in X o
1 .

V(1..N) contains bounds on the first N Fourier coefficients, and
V(N+1) is a bound on the norm of all “higher order” terms.

Other data types include LBasis, Frame, Box, TBox, . . .

Roughly speaking, a Box represents a set B = C + L(R1) ×R2 ×H , with
C : the center of the Box.
L(R1) : the image of R1 = [−1, 1]×{0}× [−1, 1]M−2 under an linear transformation L on R

M .
R2 : a rectangle R2 = [−rM+1, rM+1] × . . .× [−rN , rN ] .
H : a “higher order” ball.

The zero-thickness direction of L(R1) corresponds to the Poincaré section.

A bound on the local Poincaré map is obtained by determining
a time interval T = [t− ε, t+ ε] such that the flow-images of B at the two times t± ε
lie on opposite sides of the Poincaré section (at the destination point).

The 4293 boxes used in our shadowing procedure have been determined numerically.

The box directions fall into 4 classes.

low: The first 8 directions are roughly eigendirections of the return map (for the entire orbit).
mid-low: The next 12 directions are (I − P ) sin(k .) , for k = 9, 10, . . . , 20 = M .

Here, P is an approximation to the “low” spectral projection.
mid-high: Simply sin(k .) for k = 21, 22, . . . , 40 = N .
high: All higher order modes ( k > N ).
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Mapping a box B = b + L(R1) , where b = C +R2 +H .

Consider: a map f : B → somewhere , with f(0) = 0,
for every x a bound F (x) on Df(B)x (a convex set containing . . .)
the “corners” b + wi of B , where w1, w2, . . . , wm are the corners of L(R1).

Bound on f from bound on Df : By convexity,

f(x) =

∫ 1

0

Df(tx)x ∈ F (x) , ∀x ∈ B .

Convex combination of corners: Every x ∈ B admits a unique representation

x = ξ +
∑

i

siwi , ξ ∈ b , si ∈ [0, 1] ,
∑

i

si = 1 .

We have

f(x) =

∫ 1

0

dtDf(tx)x =
∑

i

si

∫ 1

0

dtDf(tx)(ξ + wi) ∈
∑

i

siF (b + wi) .

Notice: The bounds {F (b + wi)}m
i=1 are sufficient to estimate f(x) for arbitrary x ∈ B.The End


