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A1l Generalities, the KS equation 4

The methods apply in principle to general dissipative evolution equations

w4+ (—-A)"u+ Hy(u,Vu,...) =0,
for sufficiently simple domains and analytic nonlinearities H.

Start with stationary solutions @ = 0 and rewrite the resulting equation as

Fo(u) =u, where Fy(u)=—(—A)""Hy(u,Vu,...),
The idea is to exploit the compactness of (—A)~™" to obtain good finite dim approximations.

Example. The one-dimensional Kuramoto-Sivashinsky (KS) equation

Opu 4 403w + a(@iu + 2udyu) =0, t>0, xe€l0,m7],
with homogeneous Dirichlet boundary conditions.

A trivial solution is w = 0 , for any value of a. It defines a line in the space of pairs («,u)
satisfying F,(u) = u. Other solutions bifurcate off this line at o = 4k*, with & a positive
integer. The resulting solution curves bifurcate again ...

Determining the bifurcation diagram is simplified by the fact that many bifurcations involve
the breaking of some symmetry.



A2.1 Bifurcation diagram for the KS equation
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A2.2 Bifurcation diagram for the KS equation 6

Theorem. | G. Arioli, H.K. | For 0 < o < 80, the stationary KS equation equation exhibits eleven
pitchfork bifurcations (4, 16, 36, 64, Py, P, iPy, iPs, z'P3i, iPy), four intersection bifurcations
(Ili, IQi), and eight fold bifurcations (F'*, Fli, FQi, F?)i), connected by 44 smooth solution curves,
as depicted below. These curves undergo no other bifurcations for 0 < a < 80.
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Other results include bounds on the values of « for each bifurcation point, as well as the dimension
of the unstable manifold and the L? norm of 30 selected solutions.



B1l.1 A periodic orbit for KS 7

Non-stationary orbits. The goal is to solve initial value problems of the form

= Lu + G(u), u(0) =v,

where L is linear and “very negative”. Rewriting the equations as

O e ul = e " G(u), u(0) = v,

integrating both sides, and then multiplying by e'’, we get the integral equation

u(t) = v + /0 eI (u(s)) ds. (%)

The flow ®. After defining a suitable Banach space X of admissible initial conditions v,
solve the equation by iteration, on a space of continuous curves v : [0,7] — X.
This yields the time-t maps ®;(v) = u(t) for times up to T.

Problem: Computer-estimates only work for small 7" > 0.
Even composition of time-t maps gets soon out of control.

Way out: Shadowing of an approximate numerical orbit, using a sequence of boxes ...



B1.2 A periodic orbit for KS 8

Non-stationary solutions for KS. The most interesting are probably chaotic orbits, such as
the ones found numerically in [ F. Christiansen, P. Cvitanovic, V. Putkaradze, '97 | for a ~ 137.

For “simplicity”, we focus on periodic orbits.
Such orbits have also been constructed in | P. Zgliczynski , preprint 08 ], using different methods.

Recall KS:
Oru = Lu — a0y (u?), L= —40% — ad?.

Our “standard form” is obtained by splitting £ = L + L', with L < 0, and rewriting

Oyu = Lu + G(u), G(u) = L'u — a8, (u?).

Theorem. | G. Arioli, H.K. | The KS equation for « = 150 has a hyperbolic periodic orbit with
period T = 0.00214688 . ... Some associated Poincaré map has a simple eigenvalue 1 of modulus
1| > 4.8, and the remaining eigenvalues jio, ji3, . . . lie in the disk |p,| < 0.69.

Remarks.
e The derivative of the flow is estimated via the corresponding integral operator.
e The spaces used are far from optimal.
e The shadowing procedures uses M = 4293 rectangular boxes.



B2 Sketch of the proof 9

Sketch of the general procedure

The flow ®. Convert the integral equation (:%) to a fixed point equation for curves v : [0,7] — X.
Evaluating the solution u at time ¢ defines the time-t map, ®;(v) = u(t) .
Here, t can be replaced by an interval.

Local Poincaré map. Given a codimension one affine subspace S transversal to the flow, define
P(v) = ®;,)(v) , with ¢(v) the smallest time ¢t > 0 where ®;(v) € S.

A bound on t(v) is an interval [a, ¢| such that ®,(v) and ®.(v) lie on different sides of S.
Then @, ,(v) is an enclosure for P(v).

The local Poincaré maps P;. Using an approximate orbit ¢ — «(t), choose M milestones u; along
this orbit, and Poincaré section S; = u; + X transversal to u. Define P; : S;_; — S; as above.

Shadowing. In each section S; choose an appropriate box B; and check covering condition for
P;(Bj_1) and B, . Here we use the derivative of ®;.

In the periodic case (j = 0 is identified with j = M) this implies the existence of a fixed point
for the full Poincaré map W = Py;o0...0 Py o P; and a closed orbit u for the flow.

Linearized Poincaré maps. Let u; be the point where the orbit w intersects S;. Estimating the
velocities u; = Lu; + G(u;) gives bounds on the derivatives DP;(u;_1).

Hyperbolicity. Check cone conditions (linear analogue of covering conditions) for each DP;(u;_1).
Then DW(uq) satisfies a cone condition, and hyperbolicity follows.




B3.1 General framework — integration 10

General framework

tL

Integration. Rewrite () as fixed point problem for K, (w) = w for w(t) = u(t) — e"~v , where

(K (w))(t) = /Ot e(t_S)LG('w(s) + eSLV) ds, 0<t<T.

Since the integrand can vary rapidly in ¢ near t = 0, partitioning J = [0, 7] into n subintervals
Ji = [ti—1,t;] , with the partition being finer near ty = 0, than near t, =T, and ...

Assuming the eigenfunction {vy} of L span a dense subspace of X, define C(J, X') to be space of
all functions w(t) = ), wi(t)vy that have continuous coeflicients wy : J — R, and a finite norm

|wl| = max Y~ sup [Jw (t)v]| -
v L ted;

The following is specific to KS (with X defined later).

Lemma 1. K, is a compact map on C(J, X), has a unique fixed point w for each v € X, and the
map v — w is of class Ct. The flow (t,v) — u(t) is of class C' and compact, for 0 <t < T,



B3.2 General framework — shadowing 11

Shadowing. In the case of a single expanding direction, we can use the following

Lemma 2. Consider a Banach space X = R & Z, and let V' be the closed unit ball in Z. Let F
be a continuous and compact map

1,1 xV 5 RxV,

—1,-9] x V =5 (—00,—1] x V,
9,1] x V -5 [1,00) x V,

for some positive ¥ < 1. Then F' has a fixed point in [—9,9] x V.

Assume X = )V d V & Z, where )Y and V are one-dimensional subspaces of X
(in our case roughly the unstable and velocity directions of the flow).
Denote by U and V' the closed unit balls in Y and Z, respectively.

Definition. A section (of X') is codimension one affine subspace of X. A box in a section S is
the image of U X V under a bi-continuous affine map vy : Y & Z — S.

Definition. Let B; = ;(U x V) and B; = ¢,;(U x V) be boxes in two section S; and S;,
respectively. Given amap f : B; — S;, we say that B, f-covers B; ifthemap F': UXV — Y3 2Z,
defined by F' = @bj_l o f o1, , satisfies the hypotheses of of Lemma 2, for some v < 1.

For simplicity, we identified here ) with R, and U with [—1,1].

Corollary 3. If for each j, the box B;_1 Pj-covers B;, then the Poincaré map ¥V : Sy — Sp,
defined by W = Py;o...0 Py 0 Py, has a fixed point in By .



B3.3 General framework — derivatives 12

Linearized Poincaré map at u;_; € S;_;.

N (D®y(y) (uj—1)w) .
5 (1) !

DPj(uj_l)’w = D@t(uj_l)(uj_l)w —

Here, 1; = Lu; + G(u;) is the velocity at u; = P;(u;j_1).
And 7); is the linear functional that defines the hyperplane X, at the section S; = u; + X.

Consider now the points u; where the periodic orbit intersects the Poincaré planes S .

The low-frequency parts €; = P u; are estimated explicitly in our construction of the orbit.
To estimate the high-frequency parts hj = Py, use that u; = cht(uj_l)(uj_l)uj_l :

Lemma 4. Let ]Cj = PHD(I)t(uj_l)(uj—l)gj—l and Dj = IPHD(I)t(uj_l)(uj—l)PH . Then
sl < ksl + 11D Al 5 =12, M.

In particular, if ||k;|| < b and ||D,|| < a <1 for all j, then |h;| < (1 —a)~'b.



B3.4 General framework — hyperbolicity 13

Hyperbolicity. In the case of a single expanding direction, we can use the following

Lemma 5. Let A # 0 be a bounded linear operator on a real Banach space X =Y & Z, with' Y
one-dimensional. Thus, if y € Y and z € Z, we have a unique decomposition

Aly+z2)=vy + 2, vy ey, JeZ.

Assume now that A is compact, and that there exists positive real numbers 3 < «, such that
12| < Bmax{||y||,||z||} , and such that ||y'| > «l|y|| whenever ||y|| > ||z]| . Then A has a simple
eigenvalue A of modulus |\| > «, and no other eigenvalue of modulus > (3.

Definition. Let X = Y & Z, and let o > [3 be positive real numbers. Given two sections
u; +i(X;) and u; + X; = ¢;(X) of X, and a linear map B : X; — X, we say that B satisfies
the («, B) cone condition , if A = D@Dj_lBDw?; satisfies the hypotheses of Lemma 5.

Consider again the local Poincaré maps P; : S;_1 — S; described earlier.
Denote by u; the intersection of the periodic orbit with the Poincaré plane S;.

Corollary 6. If for each j, the derivative DP;(u;) satisfies a («;,[3;) cone condition, then
DW(ug) has a simple eigenvalue py of modulus |u1| > [[; a; and no other spectrum outside the

disk |p| < Hj Bj -



B4 Specifics for KS

The KS equation d;u = Lu + G(u) . Recall that

G(u) = L'u — a8, (u?), L+ L =—-40% — ad?,

with Dirichlet boundary conditions on [0, 7]. The eigenvalues of —L and —L’ are

\, = 0, if k < k; \ - Ak* — ak? if k < k;
PO 4kt — ak? if k> K 710 if k> k;

with eigenvectors vy (x) = sin(kx) . Here, k > \/a/2, so that ak? — 4k* <0 for k > k.

Function space used: X = X? with p = 27,
Given p > 0, and a nonnegative integer K, define

X2 : Space of odd 2w-periodic real analytic functions on the strip [Im x| < p,

K
def
u = g UKV Jul| = E ug et < 0.

k> K k> K

X¢ : Analogous space of even 2mw-periodic functions.

14



B5.1 Computer-assisted proof — basics 15

The computer-assisted proof uses a type

Ball: S = (S.C,S.R) € Rep x Radius.
representing intervals in R, or balls in a Banach space X,

B(S) = (S.C) + (S.R)Ug, B(S,X) = (S.R)U.
where Uy = {z € X : |jz]| < 1} .

The representable sets in A7 are taken to be of the form
D 2D
B(F)= ) B(FC(K)sin(K.)+ Y B(FEK),X?), F € SFourier.
K=1 K=1
The representable sets in X are defined analogously. Both are associated with data of type

SFourier, which is is an instantiation (FCoeff = Ball) of

Fourier: F=(F.T,F.C,F.E), with F.T encoding the type (even or odd, domain p), and
F.C: array [0..D] of FCoeff;
F.E: array [0..2%D] of FCoeff;

Implement bounds hierarchically, starting with simple and/or generic types, then for more com-
plex types; first for basic operations, then for functions like F, .



B5.2 Computer-assisted proof — curves 16

C(J,X2) is the Banach space of all continuous functions w : J — X2 with ...

w(t) =) wp(t)or, [lw] = max|lwl;, [lw]; =) e max|wg(t)].

teJ
E>K k> K

Simple representable sets for these spaces associated with data of type

ContFun: P=(P.C,P.E), where
P.C: array [0..PDeg] of Ball;
P.E: array [1..NErr] of Ball; (nonnegative)

B(P.C) : all polynomials of degree < PDeg, whose K-th coefficient belongs to B(P.C(K), R).
The polynomials on J = [0, T] are expanded about %T :

B(P.E, X?) : all functions v € C(J, X2) such that ||v|, <P.E(I).R for all I.

Iz

The representable sets for C(J, A7) are associated with data of type TFourier, which is an in-
stantiation (FCoeff = ContFun) of Fourier. In other words,

B(F) =) B(FC())sin(K.)+ Y B(FEK),X2), F € TFourier.

K=0
The representable sets for C(J, X§) are defined analogously.

Now implement bounds Contr, DContr, ContrFix, DContrFix, Phi, DPhi,
on the maps K, , 0, K, , ...



B5.3 Computer-assisted proof — integration 17

To obtain decent error bounds for Contr, we decompose K, (w) = P(v,w) + Q(v,w) ,
where P is linear and () quadratic,

t 2
Qv,w) = —a/ e(t_S)LJr Oz [w + GSLV] :

0

Then split @ into terms Q™ that are homogeneous of degree n in w. After rewriting the result
in terms of Fourier coefficients, we end up with integrals like

(Q%#-)(y,w))(t):—Oém Z " /te_)\m(t—S)e—Akswe(S)dS’
0

k+fl=m
and use estimates like

QD (v, w)]|. < 2av|||w]| sup
ke
el

k44 ] 6_>\ktz‘—1 .
(Akre — i) + 2/t

Here, IC and L are the frequency ranges for v and w, respectively.
The sup is estimated by the program (beforehand), using monotonicity properties of [...].

ContrFix first computes an approximate fixed point w for K, . Then it encloses w in successively
larger sets B(F) until one of them is mapped into itself by Contr.
The same strategy is applied for DContr and DContrFix.

Evaluating the result of ContrFix at a specified time t € J
yields a bound Phi on the flow @ : (t,v) — u(t) .



B5.4 Computer-assisted proof — boxes 18

As much as possible of the above is kept hidden at the higher “dynamical systems” level.

The package Boxes uses data types Vec to describe sets in X7 .
V(1..N) contains bounds on the first N Fourier coefficients, and
V(N+1) is a bound on the norm of all “higher order” terms.

Other data types include LBasis, Frame, Box, TBox, ...

Roughly speaking, a Box represents a set B = C + L(R;) X Ry x H | with
C' : the center of the Box.
L(R;) : the image of Ry = [—1,1] x {0} x [—1,1]
R, : arectangle Ro = [—7yp1, Targn] X oo X [—Ty
H : a “higher order” ball.

M=2 ynder an linear transformation L on RM .
TN -

The zero-thickness direction of L(R;) corresponds to the Poincaré section.

A bound on the local Poincaré map is obtained by determining
a time interval T = [t — ¢,t + ¢| such that the flow-images of B at the two times ¢ + ¢
lie on opposite sides of the Poincaré section (at the destination point).

The 4293 boxes used in our shadowing procedure have been determined numerically.

The box directions fall into 4 classes.

low: The first 8 directions are roughly eigendirections of the return map (for the entire orbit).
mid-low: The next 12 directions are (I — P)sin(k.) , for k=9,10,...,20 =M .
Here, P is an approximation to the “low” spectral projection.
mid-high: Simply sin(k.) for k =21,22,...,40= N .
high: All higher order modes ( k > N ).



B5.5 Computer-assisted proof — mapping boxes

Mapping a box B=b+ L(R;) , where b=C+ Ry + H .
Consider: a map f: B — somewhere , with f(0) = 0,
for every x a bound F'(x) on Df(B)x (a convex set containing ...)

the “corners” b+ w; of B , where wy,ws, ..., w,, are the corners of L(R;).

Bound on f from bound on D f: By convexity,

f(a:):/ODf(t:L')x € F(x), Ve e B.

Convex combination of corners: Every x € B admits a unique representation

JJ:§+ZSZ'UJ¢, Eeb, SiE[O,l], 28121

1

We have

f(x) :/0 dth(ta:)a::Zsi/O dt D f(tx) (€ + w;) € ZsiF(b+wi).

Notice: The bounds {F'(b+ w;)}*, are sufficient to estimate f(x) for arbitrary x € B.

The End
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