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The classical EM field

Gauge fields mediate the interaction between fundamental
constituents.

The most familiar gauge field is the electromagnetic field.
The EM field is described by a potential which is a 1-form A on
four-dimensional spacetime M.
It acts on a point charge e with the force

force = eiv F

where v is the velocity of the charge and

F = −dA

describes the strength of the electromagnetic field.
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Non-abelian gauge theory

Interaction between quarks is governed by a 1-form potential
field A, buts values are skew-hermitian 3× 3 matrices.
The field strength is

F A = dA + A ∧ A

Classical field configurations are extrema of the Yang-Mills
action

SYM(A) =
1

2g2

∫
M
〈F A,F A〉dvol

where g is a constant of physical significance, and integration is
with respect to a volume measure on M.



Non-abelian gauge theory: quantum functional integral

Quantizing the gauge field itself requires (in one approach)
using a functional integral measure

1
Zg

e−SYM(A)DA

and one wants to compute integrals of the form

1
Zg

∫
A

f (A)e−SYM(A)DA

for functions f of interest on the infinite-dimensional space A.

Typical functions of interest are products of Wilson loop
variables.
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Simplifying the quartic

Now
SYM(A) ' ||dA + A ∧ A||2

which is quartic in A, and so

1
Zg

e−SYM(A)DA

is very difficult.

Fortunately, we work only with A quotiented by a group Go of
symmetries (gauge transformations)
and this leads to a simplification in two dimensions.
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YM on R2 is Gaussian

On the plane R2 a dramatic simplification occurs:

the space
A/Go can be identified with the the subspace of all connections

A = Axdx + Aydy

for which Ay is 0.
Then

F A = dA + A ∧ A︸ ︷︷ ︸
0

= dA = − ∂yAx︸ ︷︷ ︸
f A

dx ∧ dy
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YM on R2 is Gaussian

This makes out functional integral measure have a very
convenient appearance:

1
Zg

e
− 1

2g2 ||f ||
2
L2 Df



Gaussian measure in infinite dimensions

There is no useful form of Lebesgue measure in infinite
dimensions.

Gaussian measure in infinite dimensions makes sense and is
extremely useful.
Briefly, you take R with Gaussian measure (2π)−1/2e−x2/2dx
and take an infinite product to obtain a probability measure on
R{1,2,3,...}.
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YM on R2

To summarize, the Yang-Mills measure for gauge theory on R2

is rigorously meaningful and is Gaussian measure on the
Hilbert space of functions

f : R2 → L(G)

Technically it lives on a Hilbert-Schmidt completion of
L2(R2)⊗ Lie(G).
Note that the original connection form A is now a very rough
object obtained by ‘integrating’ f .



Stochastic Geometry

Now consider a path

c : [0,1]→ R2 : t 7→
(
t , y(t)

)
If A is a smooth connection on R2, parallel-transport along the
path c is given by a path

[0,1]→ G : t 7→ G : t 7→ gt

satisfying the differential equation

dgt = −A
(
c′(t)

)
gtdt

Now that A is stochastic, this can be reinterpreted as a
Stratonovich stochastic differential equation (idea of L. Gross).



Holonomy and Wilson Loop Variables

If A is a connection and c : [0,1]→ M a smooth loop, then
g1 ∈ G is called the holonomy of A around c:

hc(A)
def
= g1

Working with matrix groups G, we can form the trace

Tr
(
hc(A)

)
which is a Wilson loop variable, as a function of the connection
A.



U(N) and heat kernel

We work with the unitary group

U(N) = {N × N complex matrices A with A∗A = I}

Qt (x) is the heat kernel on the group U(N). It solves

∂Qt (x)

∂t
=

1
2

∆Qt (x)

with initial condition

lim
t↓0

∫
U(N)

f (x)Qt (x) dx = f (I)

for every bounded continuous function f on U(N); and dx is
unit-mass Haar on U(N).
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Stochastic Holonomy

In quantum YM on the plane, each piecewise smooth simple
closed loop c in R2 is associated with a random variable hc with
values in U(N).

c



Loop expectation values notation

For a nice loop c, and a bounded measurable function f on
U(N) we have the expectation value

EN
[
f
(
hc
)]

We shall also write this as

〈f
(
hc
)
〉N

or simply as

〈f
(
hc
)
〉



Conditions satisfied by stochastic holonomy

Conditions:
I

〈f
(
hc
)
〉 =

∫
U(N)

f (x)Qg2S(x) dx

for every bounded measurable function f on U(N)

I if c1, ..., cm are loops with disjoint interiors then hc1 , ...,hcm

are independent, i.e.,

〈
m∏

j=1

fj
(
hcj

)
〉 =

m∏
j=1

〈fj
(
hcj )
)
〉

for all bounded measurable f1, ..., fm on U(N).
(L. Gross, C. King. A.S.; Driver 1989)
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Warm up: Laplacian of the Trace
Let

E1, ...,ED (1)

be an orthonormal basis of the space of N × N hermitian
matrices:

Tr(EaEb) = δab, (2)

where δab is 1 if a = b, and 0 otherwise.

The Laplacian is given
by

∆ =
D∑

a=1

∂(iEa)
2, (3)

and so,

∆TrN(x) =
D∑

a=1

∂iEaTrN(xiEa) = −
D∑

a=1

TrN(xE2
a ) = −NTrN(x).

(4)
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The normalized trace

We will work with the normalized trace:

TrN =
1
N

Tr

Then
TrN(I) = 1



Working out a Wilson loop expectation value

Recall
〈TrNhc〉 =

∫
U(N)

TrN(x)Qg2S(x) dx

So
∂〈TrNhc〉

∂S
=

∫
U(N)

TrN(x)
∂Qg2S(x)

∂S
dx

Using the heat kernel property:

∂〈TrNhc〉
∂S

=
g2

2

∫
TrN(x)∆xQg2S(x) dx

Integrating by parts:

∂〈TrNhc〉
∂S

=
g2

2

∫
∆x TrN(x)Qg2S(x) dx
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One-loop expectation value differential equation

∂〈TrNhc〉
∂S

=
g2

2

∫
∆x TrN(x)︸ ︷︷ ︸
−NTrN(x)

Qg2S(x) dx

Writing g̃2 = g2N, we have

∂〈TrNhc〉
∂S

= − g̃2

2
〈TrNh(C)〉



One-loop expectation value

Recall
〈TrNhc〉 =

∫
U(N)

TrN(x)Qg2S(x) dx

Clearly, 〈TrNhc〉 equals 1 when S = 0.
Also, the loop expectation value solves the differential equation

∂〈TrNhc〉
∂S

= − g̃2

2
〈TrNhc〉

Hence
〈TrNhc〉 = e−g̃2S/2. (5)
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Reminder: the simple loop c

c

hc is a U(N)-valued random variable, and

〈TrNhc〉 = e−g̃2S/2.



More moments

Next consider

WN(c)k = 〈TrNhk1
c · · ·TrNhkn

c 〉 (6)

for fixed k = |k |, forming the components of a giant vector
vector −→

WN(c)

in the vector space
Vk = C{k :|k |=k}



Moment differential equation

Theorem (F. Xu (1997); A.S. (2007))
If S is the area enclosed by the simple loop c then

∂
−→

WN(c)

∂S
= − g̃2

2

[
k I + II +

2
N2 III

] −→
WN(c). (7)

Hence
−→

WN(c) = e−
g̃2S

2 (k I+II+ 2
N2 III)1, (8)

where 1 is the vector in Vk with all entries equal to 1, and II and
III are linear operators (matrices).



I, II, and III

If = f (9)

and

IIf =
r∑

j=1

IIj f , (10)

where

(IIj f )k = kj

kj−1∑
s=1

f(k1,..., 6kj ,s,kj−s,...,kr ), (11)

and
(IIIf )k =

∑
1≤l<m≤r

klkmf(k1,..., 6kl ,..., 6km,...,kr ,kl+km) (12)



The method of proof is a generalization of the method used for
〈Trhc〉.

T. Lévy (2008) provided a more insightful proof, along with
many other related results, using Schur-Weyl duality of
representations of Sn and U(N).
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Large-N limit

From
WN(c)

def
= 〈TrNhc〉 = e−g̃2|S|/2

we have
W∞(c)

def
= lim

N→∞
WN(c) = e−g̃2|S|/2

exists.

Indeed,
−→

W∞(c) = lim
N→∞

−→
WN(c)

exists, on consulting the theorem mentioned before.
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Remarkably the following factorization occurs:

lim
N→∞

〈
r∏

j=1

TrN
(
hkj

c
)〉

=
r∏

j=1

lim
N→∞

〈TrN
(
hkj

c
)
〉. (13)



As a special case, for k ∈ {1,2, ...},

W∞(ck ) = e−k g̃2

2 SPk (g̃2S), (14)

where Pk (x) is an associated Laguerre polynomial of degree
k − 1.



Two loops in one

Inner loop c1 encloses area S1, and between c1 and the outer
loop c2 lies area S2.

Then

WN(c1c2) = e−
g̃2

2 (S2+2S1)
(

cosh(g̃2S1/N)− N sinh(g̃2S1/N)
)



Singer’s theory

I. M. Singer proposed that there is a ‘universal bundle’ over R2,
and for each loop c in R2 there is a unitary operator Uc on an
infinite-dimensional Hilbert space and

W∞(c) = Tr∞Uc ,

where Tr∞ is a certain trace functional, and similar results hold
for multiple loops and higher moments.



Stochastic Curvature

In quantum Yang-Mills on R2 to each subset S ⊂ R2 of finite
area is associated a random matrix

FN(S) ∈ HN

where HN is the vector space of N × N hermitian matrices.

Informally,

iFN(S) =

∫
S

curvature ∈ u(N) = iHN
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Matrix-valued White Noise

More generally, f ∈ L2
real(R2), a random N × N matrix

FN(f )

satisfying the following conditions:
(i) FN(f ) is a random hermitian matrix;

(ii) FN(f ) depends linearly on f ;
(iii) for f 6= 0, the random variable FN(f ) on HN has density

proportional to

e
−N Tr(T2)

2||f ||2 (15)

with T running over HN , the space of N × N Hermitian
matrices.



Matrix-valued White Noise

More generally, f ∈ L2
real(R2), a random N × N matrix

FN(f )

satisfying the following conditions:
(i) FN(f ) is a random hermitian matrix;
(ii) FN(f ) depends linearly on f ;

(iii) for f 6= 0, the random variable FN(f ) on HN has density
proportional to

e
−N Tr(T2)

2||f ||2 (15)

with T running over HN , the space of N × N Hermitian
matrices.



Matrix-valued White Noise

More generally, f ∈ L2
real(R2), a random N × N matrix

FN(f )

satisfying the following conditions:
(i) FN(f ) is a random hermitian matrix;
(ii) FN(f ) depends linearly on f ;
(iii) for f 6= 0, the random variable FN(f ) on HN has density

proportional to

e
−N Tr(T2)

2||f ||2 (15)

with T running over HN , the space of N × N Hermitian
matrices.



Holonomy and Curvature

Given a curvature field FN , holonomies hc can be calculated by
means of stochastic differential equations which mirror the
equations of parallel-transport in differential geometry.



Algebraic Probability Space

An algebraic probability ‘measure’ on A is a linear map

φ : A → C

satisfying
φ(1) = 1

and
φ(aa∗) ≥ 0 for all a ∈ A.

We will call A, equipped with φ, an algebraic probability space.



Matrix Example

Take A to be the algebra of all N × N complex matrices, with
the involution being the adjoint:

A 7→ A∗

and the non-commutative probability measure being given by

φ(A) = trN(A)
def
=

1
N

tr(A)



Random Matrix Example

Take A to be the algebra of all N × N matrices whose entries
are complex-valued random variables on some probability
space, with the involution being the adjoint, and the
non-commutative probability measure being given by

φ(T ) = E[trN(T )]

A special case of interest is

T =

T11 T12 · · · T1N
...

...
...

...
TN1 TN2 · · · TNN


where

Tab = Sab + iAab

and the Sab,Acd are jointly Gaussian variables.
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The Large-N Limit

Wigner’s celebrated semi-circular law implies

lim
N→∞

φ
(

FN(f )2p
)

= ||f ||2p 1
p + 1

(
2p
p

)
(16)

Thus
F∞(f )

def
= lim

N→∞
FN(f )

is a semi-circular element in a suitable probability algebra.



Freeness of subalgebras

Consider subalgebras A1, ...,AN , all closed under ∗. These are
said to be free relative to each other if

φ(a1....aM) = 0

for any a1, ...,aM ∈ A, each with φ(aj) = 0, and consecutive aj
belong to distinct Ai .



Applying Vociulescu’s theorem to Noise

Returning to the orthogonal vectors f1, ..., fm ∈ L2(R2),and the
corresponding independent Gaussian hermitian matrices
FN(fj), a fundamental result of Voiculescu implies:

(FN(f1), ...,FN(fm))
d→ (f ′1, ..., f

′
m)

where f ′1, ..., f
′
m are mutually free elements in some algebraic

probability space, and

each f ′j is semicircular with radius 2||fj || (if fj is 0 then f ′j
is 0).
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Free limit of the curvature

Intepreting the preceding result in the context of stochastic
curvature shows:

Theorem
The stochastic curvature field FN(·) converges in distribution to
a free white noise process on the plane.



A

F (1A) and F (1B) are free

B

Figure: Free noise



Objectives/Challenges

I Develop the full free Yang-Mills theory: relate curvature
and holonomy.

I Establish Singer’s theory in the free framework.
I Connect to Rajeev’s QHD Grassmanian phase space for

large-N QCD
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Thank you! Obrigado!
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