Stochastic wave equation model for heat-flow in
non-equilibrium statistical mechanics

We consider a one-dimensional non-linear stochastic
wave equation system modeling heat flow between ther-
mal reservoirs at different temperatures. We will briefly
review the problem of solving these equations in Sobolev
spaces of low reqularity. The system with ultraviolet cut-
offs has, for each cutoff, a unique invariant measure ex-
hibiting steady-state heat flow We provide estimates on
the field covariances with respect to the invariant mea-
sures which are uniform in the cutoffs.
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1.1 Introduction
1.1.1 Review

e (J.-P. Eckmann, C.-A. Pillet, L. Rey-Bellet, Com-
mun. Math. Phys 201 (1999)

Hp = H(¢r,nr)+ H(¢r,7R)

Ho,m) = 5 [(V@P + ) da
(1.2)



Hs(pq) = 3= 5 +U00)+ 5 U9 (a—a0) (13

Hr =q [ Vér(@)pr(x)dz + g0 [ Vor(x)pr(x) do
(1.4)

e Assume Fourier transforms of p’s have a certain ra-
tional function form.

e Give left and right fields Gaussian distributed ran-
dom initial conditions (temperatures 77, and Tp).

e Integrate out bath field variables to get:

dg;
d‘i — pni=1,2,..n (1.5)
dp; .
i ~ViV(q) + 0iarL + 6inrn, 1 =1,2,..,m
dr. = —(r.+p)+ V2Tl dw. -=L=1or R=n
e Assume UM (q) o< ¢, UP(q) x ¢*2, ¢ — o0, ky >
k1.

Theorem 1.1.1 (E.P.R.-B.; R.-B., T, Commun. Math.
Phys. 225(2002).) Process x(t) = (p,q,7)(t) has unique
invariant measure p (with smooth density),

P,(z,-) — u exponentially fast. (1.6)
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In the stationary state, there is heat flow, TT, # Tr and
entropy production, also Gallavotti-Cohen relation. If
T, =Ty get u = Gibbs state.

e Describes steady state heat flow from one bath to
the other.

1.2 Stochastic non-linear wave equation

e What if number of degrees of freedom increases?
e Fourier or Ohm’s law?

e Equations for a field medium.

Op(x,t) = m(x,t)
Om(x,t) = (97 — D)g(x,t) — pg’(x,t) — r(t)o(x)

dri(t) = —(ri(t) — {ay, (1)) dt + V2Tidw;(t) i =1,2

e ¢(x,t) is scalar field, x € [0, 2x]. 7w(z,t) is conjugate
momentum.

o r(t) = (rr(t),rg(t)) is an artifact of the baths.

e a(x) = (ar(z),ar(x)) are fized functions coupling
the field to the baths.

o I'= (T, Tg) are left and right temperatures.

e dw = (dwp,dwg) are driving Brownian motion terms.



1.3 Local and Global existence for Stochastic
Wave Equation

(R.-B., T.-Stochastic Processes and their Applications
115 (2005). Based on J. Bourgain, Global Solutions
non-linear SchrOdinger Equation, AMS Colloquium Pub-
lications, 46, (1999).)

Notation
Set,

(I)(w7t) = (uvr)(xvt) = (¢ + \/Wﬂ-’r)(

z,t). (1.8)

Set

Da(3,1) = {u() € (0.1, 1) (o) - < 5

and sup |[u(t) ||z < RB} (1.9)
<t

and let Fr(B,t) be the (probabilistic) event that the

equations of motion have a unique strong solution in

DR(ﬁaw'

Proposition 1.3.1 {Local Ezistence } Assume § < s <
1. There exist constants ¢y, co, c3 and C such that if (0)
satisfies |||®(0)||gs < B, R > 3c3 and t < c1/(R*3?),
then

P{Fr(B;t)} >1—Cexp (—%) (1.10)

Corollary 1.3.2 For s > %, local existence of the solu-
tion ®(-) in H® holds almost surely,

P{UFr(B,t/n)} = 1. (1.11)
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Proposition 1.3.3 (Global Existence) Let s > % Let
B = ||®(0)||gs. There exist constants, ¢, C,0 and N; =
Ni1(B,1), such that for any time t, and N > Ny,

20
Hs>6A} SCﬁmp(—“?ﬁtV)ﬂlm

P {sup ()
t'<t

1.4 Results on the Linear Problem (Spectral The-
ory)

with Y. Wang (Contemporary Math 447, (2007))

e Let GG be generator of linear equation,

0 1 O 0
82,—1 0 —Qa —OR
0 {az] -1 0
0 (aR 0 —1

(1.13)

e Linear system (no cut-offs), 1T, =# T (or 1T =
Tg) is weakly ergodic, (¢(f),m(g),r)(t) converge in
measure, t — o0o. Idea: Ornstein-Uhlenbeck Process

0

o(t) = /Ote(t_S)G 0 + €99,
VT dw(s)
. 0
_ / e—SG 0

- \/ﬁdw(s)

e Latter expression is for a field ® which has distribu-
tion v, the invariant measure.



e Spectral information for G. G has compact resol-
vent, spectrum tending to oo, with nearly degen-
erate eigenvalues for each n € Z.

e Linear system is formally hypoelliptic (but need all
Fourier coefficients of both coupling functions a to
be non-zero).

e Linear system (non-equilibrium 77, # Tx) has unique
invariant measure with sample field configurations
as regular as equilibrium case, e.g., ¢(x) is Holder
continuous with index 1/27. (Brownian motion- or
Brownian bridge-like).

Moreover stationary field is Holder continuous in x
with index 1/2 — 0.

1.4.1 Ultraviolet Cutoff Convergence

Let /() be solution to ultraviolet cutoff equations.

Gr(B,t) ={u(-), uy(-) € Dgr(B,1t) for each M} (1.14)

Proposition 1.4.1 Fiz s > 1/3, a time t > 0, and
So > 5. Then {®y ()} converges strongly to ®(-) in H?
uniformly on Gr(B,t) N {u | [[u(0)||gs < B}. Also, let

S'f(®) = Eo[f(2(2))], Saf(®) = E@[f(q)M(t)z]§ |
1.15
Then St f(®) — S'f(®), for M — oo uniformly in P,

P s < 5.




1.4.2 Equilibrium Invariant Measure, 1T, = Tk

dv =
77 exp (=5 [(10:0@P + 6@ + o)1 + ln(@)P) da)
X exp <_21TT2> dr me[l(}%] do(x)dm(x) . (1.16)

Proposition 1.4.2 (Equilibrium case, Tr, = Tr) The
measure v is imvariant with respect to the semigroup S*
in the sense that for f € X, (suitable function space)

[S'fdv= [ fdv. (1.17)

1.5 Recent Results (with Y. Wang)

e Take non-linearity bounded, Lipschitz, a(n) ~ n?,

-1/2 <60 <1)2.

e Systems with ultraviolet cut-offs have unique invari-
ant measures {7 }. Let ®7(n) denote the n Fourier
mode of the (stationary) field ®,; with respect to the
M ultraviolet cutoff.

Proposition 1.5.1 The variances ofCiDM(n) are, for
each fixed n, uniformly bounded in the ultraviolet cut-

off.
By, ||®ar(n)ln | < C(1 4 n?)'

and
EMM U(I)MG{@} <C

uniformly in M. Invariant measures {vy} have weak™
limit points supported on a space of distributions.
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e One expects these variances to be uniformly bounded
in n as well (as in the linear case) (approximate
equipartition of energy), If uniform (in n) bound
then ¢ is in H'/? and is nearly continuous.

e Violin strings and all that. Critical phenomena?



