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CHAPTER 1

Introduction

You do not learn how to drive a car by watching someone else drive.
You do not learn how to play the flute by watching someone else play. A
experienced driver or flutist may give you information or encouragement,
but you still need to drive or play yourself to gain any usable skills.

The text for this course consists largely of definitions and problems, with
a bit of insight and encouragement provided by the authors. You will solve
problems and present your solutions in class. This will be done individually
and, from time to time, in small groups. Some of the problems may not be
discussed in class, just like homework problems in a standard lecture-based
course.

You will be expected to maintain a notebook which contains your solu-
tions to all of the problems. After you complete a proof, you should re-write
it for the sake improvement and understanding and perhaps re-write it again
after hearing the class presentation and discussion. You are writing your own
textbook.

You are not to consult other notes or textbooks. This will likely be the
hardest course you have taken. If you work very hard, it will also be the
most rewarding.

Advice:

(a) Work hard and keep up.
(b) Never miss class except under dire circumstances.
(c) See the instructor or the GRA as soon as possible if you are having

problems.
(d) Form a study group, but work the problems yourself first. Use

the study group to try out your solutions and more importantly to
evaluate the solutions of other individuals.

(e) Don’t be afraid to make mistakes or ask “stupid” questions. We
learn through our mistakes. It’s better to ask a stupid question and
clear up a misconception than to fail an exam.

Proofs

Hopefully all of you have seen some proofs before. The word ‘proof’ is
the name that mathematicians give to an explanation that leaves no doubt.
The level of detail in this explanation depends on the audience. In research
journals and high level text books, Mathematicians often skip steps in proofs
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8 1. INTRODUCTION

and rely on the reader to fill in the missing steps. This technique can have
the advantages of improving efficiency and focusing the reader to the new
ideas in the proof but it can easily lead to frustration if the reader does
not have the required background in mathematics. More seriously, missing
steps can conceal mistakes; many mistakes in proofs (particularly at the
undergraduate level) begin with “it is obvious that. . . ”

In this course, we will try to avoid missing any steps in our proofs:
each statement should follow from a previous one by a simple property of
arithmetic, by a definition, by a previous theorem, or by an axiom. The
justification of each step should be clearly stated. Writing clear proofs is a
skill in itself. Often the shortest proof is not the clearest.

There is no mechanical process to produce a proof but there are some
basic guidelines you should follow. The most basic rule is that every object
that appears should be defined. In other words, when a variable, function,
or a set appears we should be able to look back and find a statement defining
that object:

(a) Let ǫ > 0 be arbitrary.
(b) Let f : R → R be given by f(x) = 2x+ 1.
(c) Let A = {x ∈ R : x13 − 27x12 + 16x2 − 4 = 0}.
(d) By the definition of continuity there exists a δ > 0 such that...

It is true that mathematicians often skip defining objects if they feel the
intent should be clear (just as they skip steps in proofs). In this course,
however, we will avoid this practice.

Secondly, always watch out for hidden assumptions. In a proof, you
may want to say “Let x ∈ A be arbitrary,” but this does not work if A = ∅

(the empty set). A common error in real analysis is to write limn→∞ an or
limx→a f(x) without first checking whether the limit exists (often this is the
hardest part). Furthermore, one of the purposes of this course if to prove
rigorously many of the basic results of single-variable calculus. As a result,
we will be proving many statements that you “know” are true. Be careful
not to assume something that you have not proven if you have been taught
in school that it is true.

As we mentioned above, the audience for which a proof is intended influ-
ences the style and content of the proof. Your audience is another student
in the class who knows the definitions and preceding results but is clueless
as to how to prove the theorem.

Logic

In this section, we review some of the basic terminology used to describe
logical arguments (and proofs). The framework we are establishing is per-
haps a bit dry and is certainly not the heart of mathematics, but it is a useful
language for discussing the various general constructs mathematicians use.

To start with, you should be familiar with the basic logical operators: if
P and Q are propositions, i.e., statements that are either true or false, then
you should understand what is meant by:
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(a) not P ,
(b) P or Q: by convention, the mathematical use of “or” is inclusive

(rather than not exclusive) so that P or Q is true even if both P
and Q are true,

(c) P and Q,
(d) if P then Q (or P implies Q or P ⇒ Q), and
(e) P if and only if Q (sometimes written “P is equivalent to Q” or

“P ⇔ Q”).

Similarly if P (x) is a predicate, that is a statement that becomes a proposi-
tion when an object such as a real number is inserted for x, then you should
understand

(a) for all x, P (x) is true and
(b) there exists an x such that P (x) is true.

Simple examples of a predicate are “x > 0” or “x2 is an integer.”
Most of our theorems will have the form of implications: “if P then Q.”

P is called the hypothesis and Q the conclusion.

Definition. The contrapositive of the implication “if P then Q” is the im-
plication “if not Q then not P .” The contrapositive is logically equivalent
to the original implication. This means that one is true if and only if the
other is true.

Sometimes it is much easier to pass to the contrapositive formulation
when proving a theorem.

Definition. The converse of the implication if P then Q is the implication
if Q then P .

The converse is not logically equivalent to the original implication.

Definition. A statement that is always true is called a tautology. A state-
ment that is always false is called a contradiction.

To show that an implication is false, it suffices to find one situation in
which the hypotheses are true but the conclusion is false. Such a situation
is called a counterexample.

One technique of proof is by contradiction. To prove “P implies Q” we
might assume that P is true and Q is false and obtain a contradiction. This
is really proving the contrapositive.

We also have symbols for logical quantifiers. Explicitly, “∀” means “for
all” and “∃” means “there exists.” For example, we might say ∀ x ∈ R,
x2 ≥ 0 or ∃ x ∈ R such that x > 0.
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To negate “∀” we change to “∃.” For example,“∀ x ∈ R, x2 ≥ 0” has the
negation “∃ x ∈ R such that x2 < 0.” Likewise, the negation of “∃ x ∈ R,
x > 0” is “∀ x ∈ R, x ≤ 0”.

These symbols are useful for scratch work (especially when it comes to
negations), but we should point that they are regarded as informal and one
would rarely seem them in a formal math text. More seriously, their use can
often disguise the meaning of a statement or lead to ambiguity or confusion.
It is thus our recommendation that you avoid using them in your formal
proofs (that is, in your homework solutions).



CHAPTER 2

Sets, Functions, and Numbers

More so than numbers, the most basic building block of contemporary
mathematics is a set. In this text we make no attempt to formally define
the term set: this is surprisingly hard to do as one is inevitably lead to
very deep philosophical questions which have no place in the present course.
Instead we will simply remark that, intuitively, a set is a collection of objects,
typically called the elements or members of the set. If A is a set, ’‘x ∈ A”
means that x is an element of A. As one might expect, x 6∈ A means that x
is not an element of A.

For this course, we will assume all the usual basic notion of set theory,
which we will describe in this section. To be precise we are assuming the
set-theoretic axioms of ZFC. In mathematics, an axiom is proposition whose
truth is assumed without proof. In fact, it is a fundamental result of Kurt
Gödel that one cannot study mathematics without using axioms: mathe-
matics (or logic) cannot be the ultimate source of truth. It can only build
its truth on a foundation of assumption.

Nevertheless the usual axioms modern mathematics are extremely mild
assumptions. Again we will not attempt to make precise formulations, but
they consist of statements whose intuitive content are things like “the notion
of a set is well-defined and there exists a set,” “there exists and infinite set,”
or “given two sets, their union is also a set.” Thus if one wishes to take the
platonic point of view (which means that mathematics is true in some ‘real’
sense), one need only assume some very ‘obvious’ statements.

Going beyond these philosophical considerations, we remark that we will
assume that the sets N, Z, and Q, consisting of the natural numbers, the
integers, and the rational numbers, respectively exist and have all their usual
basic properties.

1. The Basic Notions of Set Theory

Individual sets are described in a number of ways. If a set is sufficiently
small, we may just list its elements. For example, A = {1, 2, 7} is a set with
three elements. We might also write something like N = {1, 2, 3, . . .} which,
though not completely precise, can impart no ambiguity as to the members
of the set. Frequently, we will define the elements of a set by some property.
For example

B = {x ∈ Q : 6x5 − 27x2 + 433x + 13 = 0}
11
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is a set whose members are well defined but perhaps not readily clear to us.
In this example we read “B is the set of all x in Q such that 6x5 − 27x2 +
433x + 13 = 0.” The set with no elements is called the empty set and is
denoted by ∅.

Definition. Let A and B be sets. A is a subset of B (denoted A ⊂ B) if
every element of A is also an element of B.

Two sets are equal if they have the same elements. Thus

{1, 2, 2, 2, 3} = {1, 1, 2, 3} = {1, 2, 3}.

2.1. Prove that if A and B are sets then A = B if and only if A ⊂ B and
B ⊂ A.

Definition. The union of A and B, denoted A∪B, is the set consisting of
all elements which lie either in A or in B. That is,

A ∪B = {x : x ∈ A or x ∈ B}.

Thus

{1, 2, 5} ∪ {2, 4} = {1, 2, 4, 5}.

Definition. The intersection of A and B, denoted A ∩ B, is the set con-
sisting of all elements which lie both in A and in B. That is,

A ∩B = {x : x ∈ A and x ∈ B}.
A and B are called disjoint if A ∩B = ∅.

2.2. Prove that for all sets A, ∅ ⊂ A. Is it true that for all sets A, ∅ ∈ A?
Is it true for some sets? Is {∅} = ∅?

2.3. Suppose that A, B, and C are sets. Prove:

(a) A ∩B = B ∩A
(b) A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)
(c) A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

Definition. If A is a subset of another set U , the complement of A in U is

{x ∈ U : x 6∈ A} .

Oftentimes the larger set U is clear from context. If this is the case, we
refer to the above set as the complement of A and denote it by C(A). Thus
if we are working in Q, and A ⊂ Q, then

C(A) = {x ∈ Q : x /∈ A} .
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The next result is often called DeMorgan’s Laws.

2.4. Prove that for all sets A and B

(a) C(A ∩B) = C(A) ∪C(B)
(b) C(A ∪B) = C(A) ∩C(B)
(c) C(C(A)) = A

Definition. If A and B are sets, the set theoretic difference of B from A is

A \B = {x ∈ A : x /∈ B}.

What is the difference between a set theoretic difference and a comple-
ment?

2.5. Prove or disprove the following statements:

(a) (A \B) \ C = A \ (B ∩ C)
(b) (A \B) \ C = A \ (B ∪ C)

(Hereafter, if a problem says “prove or disprove”, you should give a proof if
is true and counterexample if it is false)

It is often convenient to describe a set using an ‘indexing’ set. We write
X = {Ai}i∈I to say that X is a set whose elements are Ai for each i ∈ I
(assuming that Ai has been defined in someway). For example, every set
A can be written as A = {a}a∈A. Frequently we will want the indexed
elements to be sets themselves. If for each i in some indexing set I, Ai is a
set, we write

⋃

i∈I Ai to denote the union of all the Ai. That is,
⋃

i∈I

Ai = {x : there exists i ∈ I so that x ∈ Ai}.

Likewise,
⋂

i∈I

Ai = {x : for all i ∈ I, x ∈ Ai} .

{Ai}i∈I is called disjoint if Ai ∩Aj = ∅ for each i, j ∈ I with i 6= j.
Though we have not yet officially defined the real numbers R, you may

use your basic knowledge to consider the following problem (and the remain-
ing problems that appear before we formally introduce them).

2.6. For x ∈ R let Ax = [x− 1, x+ 1]. Find:

(a)
⋂

x∈R

Ax

(b)
⋂

x∈[0,1)

Ax

(c)
⋃

x∈R

Ax
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(d)
⋃

x∈[0,1)

Ax

2.7. Let {Ai}i∈I be a collection of sets. Prove the following generalizations
of DeMorgan’s Laws.

(a) C(
⋃

i∈I
Ai) =

⋂

i∈I
C(Ai).

(b) C(
⋂

i∈I
Ai) =

⋃

i∈I
C(Ai).

The previous result is also given the name DeMorgan’s Laws.

Definition. If A is a set, the power set, P(A), of A is the set of all subsets
of A. Thus

P(A) = {B : B ⊂ A}.

2.8. What is the power set of {1, 2, 3}?

Definition. If A and B are sets, the Cartesian product of A and B, denoted
A×B, is the collection of ordered pairs (a, b) with a ∈ A and b ∈ B.

Likewise we define Cartesian products of more that 2 sets. If n ∈ N, the
nth Cartesian power of A, denoted An, is the collection of ordered n-tuples
with entries in A.

2. Functions

Definition. If A and B are sets, a function from A to B is a subset f of
the Cartesian product A × B such that for each a ∈ A, there is a unique
b ∈ B, with (a, b) ∈ f . We write f : A → B to mean that f is a function
from A to B. A is called the domain of f and B is the and whose codomain.

Though the precise definition of a function is defined via the Cartesian
Product, we almost never think of functions in this light. Instead we think
of them as “maps” or “rules” which, given an element a ∈ A, produces an
element b ∈ B. We write a 7→ b or b = f(a). If f : A → B, we might also
say that “f maps A into B.

As a particular consequence of the precise definition, two functions from
A to B are equal if only they take each element of A to the same element
of B. Indeed, this condition will cause them to be equal as subsets of the
Cartesian product. Likewise two functions cannot be equal unless they have
the same domain and the same codomain (even if they represent the same
“rule”). In general, the definitions in use today have often been fine-tuned
over centuries of mathematical work. As a result, many will be phrased
in such a way to build in conventions that mathematicians have deemed
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appropriate. Thus you should always look for hidden conventions of this
kind when reading a new definition.

One simple example of a function is the identity function. If A is a set
then the identity function, idA : A → A is defined by idA(a) = a for all
a ∈ A. If the domain of one function is the codomain of the other, we can
compose the functions. Explicitly, if f : A→ B and g : B → C are functions
we define the composition, g ◦ f of f and g by g ◦ f(a) = g(f(a)) for a ∈ A.

Before we continue, a remark on language. If we are being absolutely
precise the previous sentence is not well-formulated. Instead of saying “if
f : A → B and g : B → C. . . ” we should really say something like “if A,
B, and C are sets, f : A → B, and g : B → C . . .. Otherwise we have not
clearly defined the meaning of the symbols. Of course it will rapidly become
clear that it would be cumbersome to use this level of precision in general.

Thus we adopt the philosophy that if a sentence requires a symbol to be
a certain type of object than we are assuming that it is. In other words the
statement “f : A→ B” requires that A be a set and so when we write it, we
are implicitly assuming A is a set. Likewise if we write “let ǫ > 0” we really
mean that ǫ ∈ R and ǫ > 0. Of course this practice could potentially lead
to ambiguity and so we will look to ensure that our meaning is always clear
(and you should do the same). When it doubt, it is better to be cumbersome
than unclear.

Definition. Let f : X → Y . If A ⊂ B, f(A) = {f(a) : a ∈ A} is called
the direct image (or simply image) of A under f . Likewise, if B ⊂ Y ,
f−1(B) = {x ∈ X : f(x) ∈ B} is the inverse image or pre-image of B under
f .

Thus, if f : X → Y then we have two associated functions f : P(X) →
P(Y ) given by A 7→ f(A) f−1 : P(Y ) → P(X) given by B 7→ f−1(B).

Once again, we have not formally defined R, but we will use the standard
interval notation to define subset of R. For example,

(0, 3] = {x ∈ R : 0 < x ≤ 3}
and

[0,∞) = {x ∈ R : 0 ≤ x}.

2.9. Let f : R → R be given by f(x) = x2. Find

(a) f((0, 3])
(b) f−1((0, 3])
(c) f−1((−1, 2))

2.10. Let f : X → Y and let A ⊂ X, B ⊂ Y . Prove:

(a) x ∈ f−1(B) if and only if f(x) ∈ B.
(b) x ∈ f(A) if and only if there exists an a ∈ A such that f(a) = x.
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2.11. Let f : X → Y and let A,B ⊂ X. Prove or disprove:

(a) f(A ∪B) = f(A) ∪ f(B)
(b) f(A ∩B) ⊂ f(A) ∩ f(B)
(c) f(A ∩B) = f(A) ∩ f(B)

2.12. Let f : X → Y and let A ⊂ X and C,D ⊂ Y . Prove or disprove:

(a) f−1(C ∪D) = f−1(C) ∪ f−1(D)
(b) f−1(C ∩D) = f−1(C) ∩ f−1(D)
(c) f−1(f(A)) = A
(d) f(f−1(C)) = C

Definition. Let f : X → Y . f is called injective (or one-to-one or 1–1 ) if
for all a, b ∈ X, f(a) = f(b) implies a = b. f is surjective or (onto) if for all
y ∈ Y there exists x ∈ X with f(x) = y (equivalently, if f(X) = Y ).

Thus injective means that each element ofX is sent to a different element
of Y and surjective means that every element of Y is the image of some
element of B.

2.13. Let f : X → Y . Prove:

(a) f is injective if and only if for all A ⊂ X, f−1(f(A)) = A
(b) f is onto if and only if for all C ⊂ Y , f(f−1(C)) = C.

2.14. Let f : A→ B and g : B → C.

(a) Prove that if f and g are injective then so is g ◦ f .
(b) Prove that if f and g are surjective then so is g ◦ f .
(c) Suppose g ◦ f is injective. Must f and g both be injective?
(d) Suppose g ◦ f is surjective. Must f and g both be surjective?

Definition. A function which is both injective and surjective is called a
bijection. It is also called a one-to-one correspondence or simply a corre-

spondence.

2.15. Let f : X → Y be a bijection. Show there exists a function f−1 :
Y → X satisfying f ◦ f−1 = idY and f−1 ◦ f idX .

Definition. If f : X → Y is a bijection, then the function f−1 defined
above is called the inverse of f .

Intuitively speaking, the inverse of f reverses the action of f .

Caution: Given f : X → Y we have defined two other functions f :
P(X) → P(Y ) and f−1 : P(Y ) → P(X). If f is a bijection, we have
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yet another function f−1 : Y → X. Technically, it is improper to denote
two different things by the same symbol, but it is often convenient to do so
if the two objects are closely related (we refer to this practice as abuse of no-

tation). Be careful when reading a problem to make certain you understand
which f or f−1 is meant.

3. The Completeness Axiom and Other Properties of R

The collection R of real numbers is arguable the most important object
in all of mathematics (at least in classical mathematics). It is perhaps a
bit surprising that the first rigorous definition was not given until 1871 by
Georg Cantor (using a technique known as “Dedekind cuts”). In fact, it
turns out that giving a rigorous definition is a bit trickier than one might
expect.

In the interest of time, we will avoid giving an exact construction. In-
stead, we will gives a list of properties satisfied by R, which we will deem
axioms. In other words, these statements will be axioms for our purposes,
but they are not actually axioms for the whole of mathematics. Using the
usual axioms of set-theory, one can construct the set of real numbers and
deduce our axioms as properties (we will give an indication of one way to
give a precise construction, though it will not be the one originally used by
Cantor).

Axiom 1: There exists an ordered field, R, which contains Q and such that
the operations and order on R extend those on Q.

The language of this axiom is very succinct, but it contains quite a bit
of information. The reader who is unfamiliar with these terms is encouraged
to consult the appendix on prerequisites. As we mention in that appendix,
R is not the only ordered field containing Q (Q is of course already an
ordered field) and so we will need to give another property of R before we
pin it down entirely. To formulate this axiom, we must introduce some more
terminology.

Definition. Let S ⊂ R. Recall (from the appendix on prerequisites) that
an upper bound for S is an element x ∈ R so that s ≤ x for all s ∈ S. If
S has an upper bound then we say that S is bounded above. x ∈ R is a
supremum (or a least upper bound) for S if x is a minimal element in the set
of upper bounds for S.

In other words, x is a supremum for S if it is an upper bound for S with
x ≤ y for any other upper bound y of S. You will show in the next problem
that supremums are unique.
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2.16. Let S ⊂ R and let x1 and x2 be supremums for a set S. Prove that
x1 = x2.

Hence we may designate the supremum of a set S, if it exists, as sup(S).

2.17. Let S ⊂ R. Define:

(a) x is a lower bound for S
(b) S is bounded below
(c) x is a greatest lower bound for S
(d) Show that any two greatest lower bounds for a set S must be equal.

Just as supremum is a synonym for least upper bound, infimum is a
synonym for greatest lower bound. We denote the greatest lower bound of
a set S by inf(S).

2.18. For each of the following S ⊂ R, determine all upper bounds and
lower bounds. Also determined sup(S) and inf(S), if they exist.

(a) (0, 1]
(b) N

(c) ∅

(d) {1, 1
2 ,

1
3 ,

1
4 , . . . , }

(e) { 9
10 ,

99
100 ,

999
1000 , . . .}

We now give the final axiom on R.

Axiom 2: R satisfies the completeness axiom: if S ⊂ R is nonempty set
which is bounded above, sup(S) exists.

From the completeness axiom, we may prove the corresponding state-
ment for infimums.

2.19. Let S ⊂ R and define −S = {−x : x ∈ S} (the symbol we are ‘−’ we
are using here is not meant to reflect any relationship with set difference).

(a) Prove that x is an upper bound for S if and only if −x is a lower
bound for −S.

(b) Prove that x = sup(S) if and only if −x = inf(−S).
(c) Prove that if S is nonempty and bounded below, then inf(S) exists.

The following results will be very important for us when we start dealing
with sequences. The statement of part (a) is often called the Archimedean

Property

2.20. Prove the following consequences of the completeness axiom.
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(a) For all x ∈ R there exists n ∈ N with n > x.
(b) For all ǫ > 0 there exists n ∈ N with 1

n < ǫ.
(c) For all x ∈ R there exists n ∈ Z with n ≤ x < n+ 1.
(d) For all x ∈ R and N ∈ N there exists n ∈ Z so that n

N ≤ x < n+1
N .

(e) For all x ∈ R and ǫ > 0 there exists r ∈ Q with |x− r| < ǫ.

The following is called the density of Q in R.

2.21. Let a < b be real numbers and let I be the open interval (a, b). Show
that I ∩ Q 6= ∅.

A real number which is not rational is of course called irrational. The
irrational numbers are also dense in R.

2.22. Assume that
√

2 ∈ R. Prove that
√

2 6∈ Q. Show that every open
interval in R contains an irrational number.

We conclude the chapter by studying the basic properties of the standard
absolute value on R.

Definition. For x ∈ R we define the absolute value of x to be

|x| =

{

x if x ≥ 0

−x if x < 0.

2.23. Let a, b, x ∈ R and ǫ > 0. Prove:

(a) |a| ≥ 0 and |a| = 0 if and only if a = 0.
(b) |ab| = |a| |b|
(c) |a+ b| ≤ |a| + |b|.
(d) |a| ≤ ǫ if and only if −ǫ ≤ a ≤ ǫ. |a| < ǫ if and only if −ǫ < a < ǫ
(e) |x− a| < ǫ if and only if a− ǫ < x < a+ ǫ
(f) |a− b| ≥

∣

∣ |a| − |b|
∣

∣.

Hint: For part (c), avoid tediously checking cases by using (with proof) the
fact that for x, y ≥ 0, x ≤ y if and only if x2 ≤ y2.

The inequality |a+ b| ≤ |a| + |b| is extremely important in analysis and
is called the triangle inequality.





CHAPTER 3

Metric Spaces

In a sense, the real numbers are not the realm of abstract mathematics.
Indeed, those academic fields which have the most to do with the “real
world,” such as physics, chemistry, or engineering, often work in the real
numbers and may do so even more than the mathematician. Nevertheless,
we saw in the appendix on prerequisites that introducing more abstract
notions from algebra allowed us to better categorize and understand some
of the properties of real numbers.

In this chapter, we will continue this philosophy by meeting the begin-
nings of an important field called topology. We will then study the topolog-
ical properties of R (as well as other related sets). Very loosely speaking,
topology is the study of elements a particular set being “close” to one an-
other. To put a topological structure on a set is to give (in a very precise
way) a notion of ‘closeness’ to the set.

We will introduce many different concepts related to metric spaces (and
topology in general). It will be our practice to give the general definition
(perhaps with a few examples) and to give the general results and theorems
about the concepts. We will then apply our general results to the important
specific cases we are considering, namely R and Rn.

1. Basic Definitions and Examples

We will not study the ideas of topology in anywhere near their full
generality: just as with algebra, the ideas of topology reach across essentially
every area of mathematics. Instead, we will study one particular way to
define a notion of closeness: by defining an explicit distance among the
elements of our set. Just as our intuition suggests, the distance between two
elements should be a nonnegative real number. We now give the explicit
definition.

Definition. If E is a set, a metric on E is a function d : E × E → R such
that

(a) for x, y ∈ E, d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y
(b) for x, y ∈ E, d(x, y) = d(y, x), and
(c) for x, y, z ∈ E, d(x, y) ≤ d(x, z) + d(z, y).

A metric space is a set E together with a fixed metric on E.

21
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As mentioned above, we think of d as the distance from x to y. We
submit that all three properties mentioned should intuitively hold if d is be
a distance. The third property is called the triangle inequality. The elements
of a metric space are typically called points.

Technically to give a metric space is to give a set and a metric on the
set. In practice, however, we will typically name our metric spaces by the
set alone. If we need to denote the metric we will most often use subscripts.
In other words, if E is a metric space the corresponding metric will be dE

(whether we explicitly specify it or not).

3.1. Verify that each of the following is a metric space:

(a) E = R and dE(x, y) = |x− y|
(b) E is any set and

dE(x, y) =

{

1 x 6= y

0 x = y.

This metric is called the discrete metric.

(c) E is a subset of a metric space X and dE is the restriction of dX to
E ×E.

(d) E = (0, 1] and dE(x, y) = |x− y|.

Frequently a set comes with a usual or standard metric. For example,
the absolute value metric given above is the standard metric on R. When a
set has a standard metric, we will typically use it without explicitly saying
so (unless we specify another metric).

In the case that our set is a real vector space (that is, a vector space over
the field R), it is a bit easier to define a metric. Indeed, we need only define a
notion of the “size” of an element. We may then take the distance between
the elements to be the size of their difference. The explicit constructions
follow.

Definition. Let X be a real vector space. Then a function ‖ · ‖ : X → R is
called a norm on X if for x, y, z ∈ X and c ∈ R, we have:

(a) ‖x‖ ≥ 0 with ‖x‖ = 0 if and only if x = 0,
(b) ‖cx‖ = |c| ‖x‖, and
(c) ‖x+ y‖ ≤ ‖x‖ + ‖y‖.

A (real) normed linear space is a real vector space together with a fixed
norm.

You will probably not be surprised to learn that the third requirement
above is called the triangle inequality. As we mentioned above, normed
linear space lead to metric spaces. We point out that the absolute value on
R makes its a normed linear space over itself. Again, whenever we discuss
in properties of R with depend on the choice of a norm, this is the norm we
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use unless otherwise specified. Moreover, we will drop the adjective ‘real’
from the phrase ‘real vector space’ in that all of of our vector spaces will be
vector spaces over R.

3.2. Suppose that ‖ · ‖ is a norm on the vector space X and define d :
X ×X → R by d(x, y) = ‖x− y‖. Show that d is a metric on X.

Definition. We say that a subset S of normed linear space (X, ‖ · ‖) is
bounded if there is a K ∈ R with ‖x‖ ≤ K for each x ∈ S. We say a
function into a normed linear space is bounded if its image is bounded as
set.

In particular, a subset S of R is bounded if there is some K ∈ R such
that |x| ≤ K for all x ∈ S. Notice that this is equivalent to saying that S is
bounded both above and below (why?). also, recall (from Section 4 of the
appendix on prerequisites) that if n ∈ N, Rn is made into a vector space by
using point-wise operations. That is,

(x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, . . . , xn + yn)

for xi, yi ∈ R and

c(x1, . . . , xn) = (cx1, . . . , cxn)

for c, xi ∈ R.
Likewise if A is any set, we may define operations on the collection of

functions A→ R by putting (f+g)(x) = f(x)+g(x) and (cf)(x) = cf(x) for
f, g : A → R, c ∈ R and x ∈ A. This operations are again called point-wise
operations.

3.3. Prove that each of the following are normed linear spaces.

(a) R2 under ‖(a, b)‖ = |a| + |b|.
(b) R2 under ‖(a, b)‖ = max(|a|, |b|).
(c) R2 under ‖(a, b)‖ =

√
a2 + b2.

(d) {f : R → R|f is bounded} under ‖f‖ = sup{|f(x)| : x ∈ R}.
(e) {f : A → R|f is bounded} under ‖f‖ = sup{|f(a)| : a ∈ A}, where

A is any fixed set.

Just as R comes with a standard (or obvious) choice for a norm, so does
Rn. Once again, we will assume for now that positive real number has a
unique square root.

Definition. We define the dot product on Rn by putting

(x1, . . . , xn) · (y1, . . . , yn) = x1y1 + · · · xnyn.
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The standard norm on Rn is then defined by ‖x‖ =
√
x · x for x ∈ Rn. Rn

together with this norm is called n-dimensional Euclidean space and denoted
En.

Of course we must prove that the standard norm is actually a norm.

3.4. Let ‖ · ‖ be the standard norm on Rn and suppose that x, y ∈ Rn.
Prove the following.

(a) ‖x± y‖2 = ‖x‖2 ± 2x · y + ‖y‖2

(b) |x · y| ≤ ‖x‖‖y‖
Conclude that the standard norm defines a norm on Rn.

From this point forward, if we are working in Rn, the symbol ‖ · ‖ is
assumed to refer to the standard norm. You will notice that the metric
which results from the standard norm on Rn is the same is usual Euclidean
distance (that is, the so-called distance formula). You will also notice that
the standard norm on R is just the absolute value.

2. Open and Closed Sets

Having discussed some of the important ways that we define metrics, we
now study some of the general properties of metric spaces.

Definition. Suppose that E is a metric space. If p0 ∈ E and r > 0, we
define the open ball of radius r centered at p0 to be

B(p0, r) = {p ∈ E : dE(p, p0) < r} .
Likewise the closed ball of radius r centered at p0 is {p ∈ E : d(p, p0) ≤ r}
and is denoted by B[p0, r].

We remarked at the beginning of this chapter the topology is the study
of nearness. In our current setting, this nearness is expressed with open
balls. An open ball (particularly on with a small radius) is to be thought of
as the collection of points near the point at which the ball is centered. Of
course a small radius reflects a greater degree of nearness.

In our language, we required the radius of a closed ball to be nonzero, but
some authors allow the choice r = 0. That is, one might put B[p0, 0] = {p0}.
It is not very useful to consider an open ball of radius zero since since a thing
is always the empty set.

3.5. For each of the norms given in parts (a), (b), and (c) of Problem 3.3
and for the discrete metric on R2, draw the closed and open balls centered at
(0, 0) of radius 1. Likewise, for parts (d) and (e) of Problem 3.3, describe
B[0, 1], where 0 is the zero function (that is the function whose value at
every point is zero).
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Having defined open balls, we may define more general open sets. The
notion of an open set is extremely important in both topology and analysis
(indeed the notion of an open set is the framework which is used to define
topology).

Definition. If E is a metric space, a set U ⊂ E is called open (in E) if for
all p0 ∈ U there exists an r > 0 so that B(p0, r) ⊂ U . F ⊂ E is called closed

if C(F ) = E \F is an open set. A set is clopen if it is both closed and open.

3.6. Classify the set A as open, closed or neither.

(a) A = {(x, y) : x2 + y2 < 2} ⊂ E2

(b) A = {1, 1
2 ,

1
3 , . . .} ⊂ R

3.7. Let (E, d) be a metric space. Prove:

(a) ∅ and E are both clopen sets in E.
(b) If I is any set and for all i ∈ I, Ui is an open set in E then

⋃

i∈I Ui

is open.
(c) If n ∈ N and U1, . . . , UN are open sets in E then

⋂n
i=1 Ui is open.

We often interpret parts (a) and (b) by saying that a union of open sets
is open and and a finite intersection of open sets is open.

3.8. Let (E, d) be a metric space. Prove:

(a) If I is any set and for each i ∈ I, Fi ⊂ E is closed then
⋂

i∈I Fi is
closed.

(b) If F1, . . . , Fn are closed in E for some n ∈ N then
⋃n

i=1 Fi is closed.

Thus we see that an intersection of closed sets is closed and a finite union
of closed sets is open.

3.9. Show by counterexample that in Problem 3.7 (c), we cannot replace
the intersection of finitely-many open sets by arbitrarily many and in Prob-
lem 3.8 (b) we cannot replace the union of finitely-many closed sets by
infinitely many.

In other words, an arbitrary intersection of open sets need not be open
and an arbitrary union of closed sets need not be closed. The next problem
justifies our use of adjectives in defining open and closed balls.

3.10. Let E be a metric space. Prove:

(a) Any open ball in E is an open set.
(b) Any closed ball in E is a closed set.
(c) Any finite subset of E is closed.
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Definition. Let E be a metric space and let S ⊂ E. S is bounded if S is
contained in a ball.

We have apparently two different notions of the word bounded. For the
sake of coherence we show that they coincide.

3.11. Suppose S is a subset of a normed linear space X. Show that S is
bounded in the sense of normed linear spaces if and only if it is bounded in
the sense of metric spaces (where X is of course made into a metric space
using the norm).

3.12. Let E be a metric space and let S ⊂ E. Show that S is bounded if
and only if the set {dE(a, b) : a, b ∈ S} is bounded above in R.

This last result gives one indication of how we might measure the size
of a bounded set.

Definition. If E is metric space and S ⊂ E is bounded, we define the
diameter of E by

diam(E) = sup{dE(a, b) : a, b ∈ S}.

3.13. Let E be a metric space and x ∈ E. What is the diameter of B(x, r).
What about B[x, r]. In R2, what is the diameter of the set {(x, y) ∈ R2|x2 +
y2 = r2} (this set is of course called the circle of radius r centered at the
origin).

Recall that if (E, d) is a metric space and A ⊂ E then we can regard
A to be a metric space in its own right under the metric inherited from E.
When we take this perspective, we often say that A is a subspace of E. To
some extent, this terminology is merely psychological: any subset of E can
become a subspace, but the language is often useful to make our perspective
clear.

3.14. Let E be a metric space and let A ⊂ E. Prove:

(a) A subset U ⊂ A is open in (A, d) if and only if there exists an open
set O in E with U = A ∩O.

(b) A subset F ⊂ A is closed in (A, d) if and only if there exists a closed
set H in E with F = A ∩H.

3.15. Let A = (0, 1] ⊂ R. Let B = (1
2 , 1) and C = (1

2 , 1]. Classify each of
B and C as open, closed, both, or neither when regarded as

(a) subsets of A and
(b) subsets of R.
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Thus if A is a subspace of E, and S ⊂ A, we see that S being open
with respect to E is a different notion that S being open with respect to A.
Misconceptions along these lines often lead to errors in proofs.

A major theme throughout this chapter will be the fact that, when we
apply topological notions to R, we often get very useful and special results.
The first example of this phenomenon is the following.

3.16. Let F ⊂ R be a nonempty closed set which is bounded above. Prove
that sup(F ) ∈ F . Conclude that a nonempty closed set in R has a maximum.

Hint: Assume not and show C(F ) is not open.

3. Sequences

As its title suggests, this section serves to introduce the notion of se-
quences. Sequences are extremely important for studying the properties
both of R and of general metric spaces.

Definition. Let E be a set. A sequence in E is a function f : N → E.

Instead of writing something like f(n) for the value of a sequence at n,
we typically write something like an. This notation is meant to reflect the
intuitive notion that a sequence is an “infinite list” of elements. We denote
the entire sequence by (an)∞n=1 or (an) and call an the nth term.

Definition. A subsequence of the sequence (an)∞n=1 is a sequence (bn)∞n=1

where for some k1 < k2 < · · · in N, bn = akn
.

Intuitively a subsequence is created by skipping (possibly infinitely-
many) terms of the original sequence.

Definition. Let (pn)∞n=1 be a sequence in a set E. If S is a subset of E,
we say that (pn) is eventually contained in S if there is an N ∈ N such that
pn ∈ S for n ≥ N . If E is a metric space, and p ∈ E. We say that (pn)
converges to pn if (pn) is eventually contained in every open set of E that
contains p. If (pn) converges to p, we say that p is a limit of pn and often
write pn → p.

Intuitively, pn converges to p if the terms are eventually very close to p.
Not surprisingly, we have captured this intuitive notion by the use of open
balls. An open ball centered at p is the collection of points which are close
to p. Thus to say that the sequence eventually lies in this open ball is to
say that the sequence is eventually very close to p. Regardless of the degree
of closeness we require, the sequence is eventually that close.
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3.17. Let pn be a sequence in the metric space E. Show that pn → p if
and only if for every ǫ > 0 there is an N ∈ N so that dE(pn, p) < ǫ for each
n ≥ N . Prove that pn → p if and only if dE(pn, p) converges to zero in R.

Technically, a sequence in a metric space is a special type of function
into the space. Since we have defined the notion of a bounded function, we
get for free the notion of a bounded sequence. Explicitly, the sequence (an)
is bounded if the set

{an|n ∈ N]}

is contained in some ball. If our space happens to be a normed linear space,
we see that (an) is bounded if and only if there is someK ∈ R with ‖an‖ ≤ K
for all n ∈ N.

3.18. Let pn → p in the metric space E. Prove:

(a) If pn → q in E then p = q.
(b) If (qn) is a subsequence of (pn)∞n=1 then qn → p.
(c) (pn) is bounded.

Part (a) of the previous problem justifies us in calling p the limit of
(pn). We often write limn→∞ pn. If a sequence has a limit, we say that it is
convergent. Otherwise, we say that it is divergent. If (an) is divergent, we
might say that limn→∞ an does not exist.

The following result is our first example of the relationship between the
topological properties of a metric space and the notion of sequences.

3.19. Let S be a subset of the metric space E. Prove that S is closed if
and only if for every convergent sequence (pn)∞n=1 with pn ∈ S, we have
limn→∞ pn ∈ S.

Hint: For the reverse implication, use contradiction. More explicitly, if
C(S) is not open, construct a sequence in S which converges to point outside
of S.

We next move to the specific case of E = R. The following results are
often called the limit laws.

3.20. Let (an)∞n=1 and (bn)∞n=1 be sequences in R with an → a and bn → b.
Prove that:

(a) an + bn → a+ b
(b) anbn → ab
(c) If bn 6= 0 for all n ∈ N and b 6= 0 then an

bn

→ a
b

(d) If an ≤ bn for all n then a ≤ b.
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Hint: For (b), use the fact that

anbn − ab = (an − a)bn − a(bn − b).

For (c), begin by proving the case that an = 1. For this case, use the fact
that

1

bn
− 1

b
=
bn − b

bnb
.

Prove that you can choose N0 so that for n ≥ N0, |bnb| > b2

b and use this
equality.

The next result is known as the Squeeze Theorem.

3.21. Suppose that (an), (bn), and (cn) are sequences in R with an ≤ bn ≤ cn
and an, cn → a. Then bn → a.

3.22. Which, if any, of the results in Problem 3.20 would remain true if (an)
and (bn) were convergent sequences in an arbitrary normed linear space?

3.23. Let (an) ⊂ [a, b] and an → p. Prove that p ∈ [a, b].

Hint: It is not too difficult to show this directly, but with an appropriate
application of some results we have already proven, the proof is trivial.

Definition. Let (an)∞n=1 be a sequence in R. (an)∞n=1 is called increasing if
an ≤ an+1 for all n ∈ N. Likewise it is called decreasing if an ≥ an+1 for all
n ∈ N. It is called monotone if it is either increasing or decreasing.

3.24. Let (an)∞n=1 be a bounded monotone sequence in R. Prove:

(a) If (an)∞n=1 is increasing then an → sup{an : n ∈ N}.
(b) If (an)∞n=1 is decreasing then an → inf{an : n ∈ N}.
(c) A monotone sequence in R is convergent if and only if it is bounded.

The previous result is known as the Monotone Convergence Theorem.

3.25. Let (an) be a sequence in R. Prove that (an) has a monotone subse-
quence.

Hint: Consider two cases. Begin by assuming that there exists a subse-
quence with no least term.

We conclude this section with a few interesting problems regarding se-
quences.
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3.26. Let pn → p in the metric space E. Let S = {p, p1, p2, . . .}. Prove that
S is a closed set.

3.27. Define a sequence by an = rn for r ∈ R (such a sequence is called
a geometric sequence). For what values of r does this sequence converge?
What is the limit? Give proofs.

3.28. Let an → a in R. Prove that sn → a where sn = 1
n(a1 +a2 + · · ·+an)

for n ∈ N.

In other words if a sequence in R converges to a ∈ R, the average value
of the first n terms also converges to a.

4. Cauchy Sequences and Completeness

Though the examples pertinent to analysis perhaps do not demonstrate
it, R is very special as a metric space. Of course most other spaces do
not have its level of algebraic structure (that is most metric spaces do not
come with a notion of addition, division, etc.), but these characteristics do
not entirely describe its special nature. In this section, we formulate an
extremely important property of metric spaces and show that R satisfies it.

Along the way, we will need the following notion. It is named after
a mathematician how helped put Leibnitz’s and Newton’s calculus on a
rigorous foundation.

Definition. Let (an)∞n=1 be a sequence in the metric space E. (an) is called
Cauchy if for all ǫ > 0 there exists N ∈ N so that if m and n are integers
with m,n ≥ N then dE(an, am) < ǫ.

Intuitively then a sequence is Cauchy if the terms the sequence are even-
tually very close together.

3.29. Let E be a metric space and let (pn) be a sequence in E. Prove:

(a) If (pn) is convergent then (pn) is Cauchy
(b) If (pn) is Cauchy then the (pn) is bounded.
(c) If (pn)∞n=1 is Cauchy and contains a convergent subsequence than

the sequence itself converges.

We may now formulate the property alluded to above.

Definition. A metric space is called complete if every Cauchy sequence is
convergent.

3.30. Prove that R is a complete metric space.
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Hint: Use the previous result, the Monotone Convergence Theorem, and
3.25.

The proof we suggested relies on the Monotone Convergence Theorem
which ultimately relies on the Completeness Axiom of R. In fact, the as-
sumption that every Cauchy sequence converges in R is equivalent to the
the Completeness Axiom (that is, one can prove one from the other given
only the fact that R is an ordered field). In other words the Completeness
Axiom is equivalent to the statement that R is complete as a metric space,
thus explaining its name.

More generally, En is also complete as we now demonstrate.

3.31. Let (pk)
∞

k=1 be a sequence in En. For each k, write

pk =
(

p
(1)
k , p

(2)
k , . . . , p

(n)
k

)

.

with p
(i)
k ∈ R. Prove:

(a) For each 1 ≤ i ≤ m, k, ℓ ∈ N,
∣

∣

∣
p
(i)
k − p

(i)
ℓ

∣

∣

∣
≤ ‖pk − pℓ‖.

(b) For each k, ℓ ∈ N ‖pk − pℓ‖ ≤
n

∑

i=1

∣

∣

∣
p
(i)
k − p

(i)
ℓ

∣

∣

∣
.

(c) (pk)
∞

k=1 is Cauchy in En if and only if for all 1 ≤ i ≤ m the sequence

(p
(i)
k )∞k=1 is Cauchy in R.

(d) (pk)
∞

k=1 is convergent in Em if and only if for all 1 ≤ i ≤ m the

sequence (p
(i)
k )∞k=1 is convergent in R. Moreover, if p

(i)
k → p(i) for

1 ≤ i ≤ m then

pk →
(

p(1), . . . , p(n)
)

.

3.32. Prove that Em is complete for all m ∈ N.

3.33. Let A be a closed subset of a complete metric space E. Prove that
the subspace A is also a complete metric space (as a subspace of E).

3.34. Show that (0, 1) is not complete.

5. Interior and Closure

We continue to study the topological properties of general metric spaces.
Of course not every set in a metric space is open, but given a set we do have
a natural way of finding an open set.

Definition. Let A be a subset of the metric space (E, d). p ∈ E is called
an interior point of A if there is an open ball centered p which is contained
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in A. The collection of interior points of A is called the interior of A and is
denoted int(A).

3.35. Let A be a subset of the metric space E. Prove:

(a) int(A) ⊂ A.
(b) int(A) is an open set.
(c) If U ⊂ A and U is open then U ⊂ int(A).
(d) int(A) is the union of all the open sets contained in A.
(e) A is open if and only if A = int(A).

The part (d) of the previous problem tells us that the interior of A is
the largest open set contained in A. This interpretation of the interior leads
to a corresponding notion for closed sets.

Definition. Let A be a subset of the metric space E. The closure of A,
denoted by Ā, is the intersection of all the closed sets containing A.

3.36. Let A be a subset of the metric space E. Prove:

(a) A ⊂ Ā.
(b) Ā is closed.
(c) A is closed if and only if A = Ā
(d) A point p ∈ E lies in A if and only if every open ball centered at p

intersects A.
(e) A point of E lies in Ā if and only if there is a sequence in A that

converges to.

Definition. Let A be a subset of the metric space E. The boundary of A,
denoted bd(A) is defined by Ā \ int(A).

3.37. Let A be a subset of the metric space E. Prove:

(a) The point p ∈ E lies in bdA if and only if every every ball centered
at p intersects both A and its complement.

(b) A point of E lies in bdA if only if there is a sequence in A converging
to it and a sequence in C(A) converging to it.

(c) E is the disjoint union of int(A), int(C(A)), and bd(A).
(d) A is closed if and only if A ⊃ bdA.
(e) A is open if and only if A ∩ bdA = ∅.

3.38. For each of the following “A ⊂ E” find int(A), Ā, bdA and determine
if A is open, closed, both, or neither.

(a) Q ⊂ R

(b) Q ⊂ R, where R is given the discrete metric
(c) (0, 1] ⊂ (0, 1] ∪ (2, 3)
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(d) (2, 3) ⊂ (0, 1] ∪ (2, 3)
(e) (0, 1) ⊂ [0, 1], where [0, 1] is given the discrete metric
(f) {(x, y) : x2 + y2 ≤ 1} ⊂ E2

(g) {(x, y) ∈ R2 : x ∈ Q} ⊂ E2

Definition. If E is a metric space, A ⊂ E is called dense in E if Ā = E.

The proof of the next result will explain why the density of R is called
is such.

3.39. Show that Q is dense in R.

6. Compactness

Though its formulation may seem strange at first, the topological notion
of compactness is extremely important and has consequences which are far-
reaching in many branches of mathematics.

Definition. Let E be a metric space and let K ⊂ E. An open cover of K
is a collection of open sets in E, (Oα)α∈I , such that K ⊂ ⋃

α∈I Oα. K is
compact if for every such open cover there exists a finite set F ⊂ I with
K ⊂ ⋃

α∈F Oα (the collection (Oα)α∈F is said to be a finite subcover). E is
called a compact metric space if E is a compact subset of itself.

We have seen previously that whether a set is open (or closed) depends
on the space of which it is considered a part. For example, if E is a metric
space and A ⊂ E is a set then A may or may not be open as a subset of E. It
is however always open as a subset of itself (considered as a subspace). Thus
the notion of openness depends on the larger set in which one is working.
The next result shows that this is not the case when it compactness.

3.40. Let K ⊂ (E, d). Prove that K is a compact subset of E if and only if
K is a compact metric space when it viewed as metric space itself.

Hence compactness is more intrinsic to a metric space then is openness.
The observant reader will note that this is also the case with completeness,
but completeness is a less important notion than compactness as it is only a
notion of metric spaces and not of topological spaces in general (we remarked
at the beginning of this chapter that metric spaces are a special type of
topological space but that they do not tell the whole story).

3.41. Prove that K = {0, 1, 1
2 ,

1
3 , . . .} ⊂ R. is compact and A = (0, 1] ⊂ R

is not.
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3.42. Suppose that F is closed subset of a compact metric space E. Show
that F is compact.

3.43. Let K be a compact subset of a metric space. Show that K is
bounded.

The following statement is very useful in proving results about compact
spaces.

3.44. Let K be a compact metric space and suppose (Fn)n∈N is a decreasing
sequence of nonempty closed subsets of K (to say that (Fn) is decreasing is
to say that F1 ⊃ F2 ⊃ · · · ). Prove that

⋂

∞

n=1 Fn 6= ∅. Suppose in addition
that limn→∞ diam(Fn) = 0 show that

⋂

∞

n=1 Fn consists of exactly one point.

Hint: Suppose that the intersection is empty and consider the collection
{C(Fn)}.

We will next give several different characterizations of compact metric
spaces.

3.45. Prove that a compact metric space is complete.

3.46. Show that a compact subset of a metric space is closed.

Compact subsets of En have a very easy characterization. The following
result is known as the Heine-Borel Theorem.

3.47. Let K ⊂ En. Prove that K is compact if and only if K is closed and
bounded.

Hint: We give the outline of the reverse implication. You should fill in the
details. Let K be a set which is closed and bounded and suppose that it is
not compact. Then there exists a collection (Ui)i∈I of open sets covering K
without a finite subcover. We may put K ⊂ ⋃n1

j=1B
1
j where B1

j is a closed

ball of radius 1. Then there exists j1 ≤ n1 so that K∩B1
j1

cannot be covered
by finitely many of the Ui. Repeat the argument for

K ∩B1
j1 ⊂

n2
⋃

j=1

B2
j

where the B2
j is a closed ball of radius 1/2. Continuing in this manner, we

conclude that for all n, K ∩ B1
j1

∩ · · · ∩ Bn
jn

cannot be covered by finitely
many of the Ui. For each n choose a point

pn ∈ K ∩B1
j1 ∩ · · · ∩Bn

jn

.
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Show the sequence (pn) thus defined is Cauchy. Let p be the limit. Show
that p ∈ K and conclude that p ∈ Ur for some r ∈ I. Deduce that K∩B1

j1
∩

· · · ∩B1
jn

⊂ Ur for some n, a contradiction.

Unfortunately the previous result is a very special property of En.

3.48. Give an example of a metric space E and set K which is closed and
bounded and yet not compact.

Nevertheless, if we modify the formulation a bit, we can prove a result
that is still somewhat nice. Along the way we will prove another extremely
useful characterization of compact metric spaces.

Definition. A metric space, E, is called totally bounded if, for all ǫ > 0, E
may covered by finitely many balls of radius ǫ.

3.49. Prove:

(a) The metric space E is totally bounded if and only if for all ǫ > 0
there exist a finite number of balls of radius less than ǫ whose union
is E.

(b) A subset of R is bounded if and only if it is totally bounded
(c) A subset of En is bounded if and only if it is totally bounded.

3.50. Give an example of a metric space and a subset A that is bounded
but not totally bounded.

Definition. Let A be a subset of the metric space E and let p ∈ E. p is
called a cluster point of A if every ball centered at p intersects A in infinitely-
many points. The collection of cluster points of A is denoted A′. Points in
the set A \ A′ are called isolated points of A.

3.51. Let A be a subset of the metric space E and suppose p ∈ E. Show
that x ∈ A′ if and only every ball centered at p intersects A at a point other
than p.

3.52. Let E be a compact metric space. Show that every infinite set in E
has a cluster point (which may or may not lie in the set).

Hint: If A has no cluster point, then for every p ∈ E there is an open ball
centered at p which intersects A at finitely-many points.

3.53. Let A = { 1
n + 1

m : n,m ∈ N} ⊂ R. Find A′.
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3.54. Let A be a subset of the metric space E. Prove:

(a) The point p ∈ E lies in A′ if and only if there is a sequence (pn) in
A with pn 6= p for all n and pn → p.

(b) A′ ⊂ Ā.
(c) A is closed if and only if A′ ⊂ A.

3.55. Give an example, if possible, of each of the following. Otherwise,
prove no example exists.

(a) A ⊂ R, A infinite, A′ = ∅.
(b) A complete bounded noncompact metric space E.
(c) A metric space E so that for every closed ball B in E, B is not

complete.

Definition. A metric space is called sequentially compact if every sequence
contains a convergent subsequence.

We can now state the characterizations of compact spaces that we have
been working towards.

3.56. Prove that the following are equivalent for a metric space E.

(a) E is compact,
(b) E is sequentially compact, and
(c) E is complete and totally bounded.

Note similarity between the equivalence of the first and the third con-
ditions on the one hand and the Heine-Borel Theorem on the other. The
analogy is even more clear when we remark that a subset of En is complete
if and only if it is closed (why?).

7. Connectedness

Like compactness, connectedness is an extremely important topological
concept. It is also a bit more intuitively motivated. Essentially a metric
space if it cannot be “broken into separate parts.” For example, we will
show that the real line R is connected: it is one continuous line. On the
other hand the set [0, 1] ∪ [1, 2] is not connected.

Definition. The metric space E is called connected if the only clopen sub-
sets of E are E and ∅. A ⊂ E is connected if it is connected as a metric
space (when given the subspace metric).

By definition, connectedness enjoys the same intrinsic nature as does
compactness.
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3.57. Let A be a subset of the metric space E. Prove:

(a) A is connected if and only if there do not exist disjoint nonempty
open sets U1 and U2 in A with U1 ∪ U2 = A.

(b) A is connected if and only if there do not exist open sets O1 and
O2 of E with O1 ∩ A 6= ∅, O2 ∩ A 6= ∅, A ∩ O1 ∩ O2 = ∅, and
A ⊂ O1 ∪ O2.

(c) A is connected if and only if there do not exist closed sets F1 and
F2 in E with F1 ∩ A 6= ∅, F2 ∩ A 6= ∅, A ∩ F1 ∩ F2 = ∅, and
A ⊂ F1 ∪ F2.

The condition given in part (a) demonstrates why the definition of con-
nectedness matches the intuitive notion described above: A is divided into
the two “separate parts” U1 and U2. We often say that the sets O1 and O2

above disconnect A.

Definition. A set, S, in En is called convex if whenever a, b ∈ S, we have
λa+ (1 − λ)b ∈ S for any λ ∈ [0, 1].

In other words, S is convex if given any two points of S, the line segment
between them lies in S. This definition can of course be generalized to any
vector space.

3.58. Let A ⊂ R. Prove that A is convex if only if for every pair of points
a, b ∈ A the interval [a, b] is contained in A. Prove that a set in R is convex
if and only it if is an interval.

3.59. Let A ⊂ R. Prove that A is connected if and only if A is an interval.

Hint: If A is not an interval, find a point which is not in A and yet lies
between two points of A. Use this point to construct two sets that disconnect
A. Conversely suppose O1 and O2 disconnect A. Let a ∈ O1 ∩ A and
b ∈ O2 ∩ A and assume a < b. Let x = sup{c ∈ R : [a, c) ⊂ O1 ∩ A). Show
x /∈ O1 ∪O2.

3.60. Show that a convex subset of En is connected.

8. Series and Decimals

You probably already know of the importance of series in regards to R.
In fact, the concept generalizes to any normed linear space (but we will still
use it mostly to study the properties of R).
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3.61. Suppose that (an) is a sequence in a normed linear space X. The
sequence of partial sums of (an) is the sequence, (sn) given by sn =

∑n
i=1 an

for n ∈ N. If sn → L we put L =
∑

∞

n=1 an and we say that (an) sums to L.

A bit less formally, we call
∑

∞

n=1 an a series. As one might expect, we
say that

∑

∞

n=1 an does not exist if the sequence of partial sums of (an) is
divergent.

3.62. For what values of x > 0 does
∑

∞

n=1 x
n converge? Prove it rigorously

and give the limit if it exists.

Hint: If x 6= 1 prove that for n ∈ N

1 + x+ x2 + · · · + xn =
1 − xn+1

1 − x
.

3.63. Let (an) is a sequence and b ∈ R. Suppose that 0 ≤ an ≤ b. Show
that

∑

∞

n=1 anb
−n converges and the the limit lies in [0, 1].

As we have mentioned many times, our definition of R is purely ax-
iomatic, but using series we can give systematic ways of describing them.
For notation simplicity, we will want to allow sequences to be indexed by
Z rather than just N. Technically an integrally indexed sequence is a func-
tion Z → R, but we will write (an)n∈Z and give this notation in its obvious
meaning.

Definition. Fix a natural number b ≥ 2. A base b decimal expansion is a
integrally indexed sequence (xn)n∈Z with xn ∈ Z and 0 ≤ xn < b. Moreover,
we require that there is some N ∈ Z such that xn = 0 for n < N .

You have probably already guessed that given a base b decimal ex-
pansion (xn)n∈Z, we get a real number. Firstly we get an integer z =
x0 + x−1b+ x−2b

2 + · · · . This sum is immediately well-defined: since only
finitely many xn for negative n are nonzero, it is actually just a finite sum
in Z. Likewise, by Problem 3.63, we get a real number d in [0, 1] by putting
d =

∑

∞

n=1 dnb
−n. The real number z + d is called the real number coming

from the decimal expansion (xn)n∈Z.
Needless to say, if (xn)n∈Z is a decimal expansion with xn = 0 for n > N

(with N < 0), we usually denote the associated real number x by

x = xNxN+1 . . . x0.x1x2x3x4 . . .

(usually of course cutting on extra zeros on the left in the obvious sense).

3.64. Suppose that x ∈ R show that there is a base b decimal expansion
(xn)n∈Z which gives x.
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Unfortunately, decimal expansions are not unique. For example, for
b = 10, (that is the usual base), we may represent the number 1 with the
decimal expansion, (xn)n∈Z, where x0 = 1 and xn = 0 for all n ∈ Z \0 or we
can represent it with (yn)n∈Z where yn = 0 for n ≤ 0 and yn = 9 for n > 0.

3.65. Show that x ∈ R has a unique base b decimal expansion if and only
if x does not have the form a/bn for a ∈ Z and n ∈ N. If x does not have a
unique decimal expansion, show that it has exactly 2, one which ends with
a constant sequence of zero and one which ends with a constant sequence of
b− 1.

3.66. Suppose that x, y ∈ R have decimal expansions (xn)n∈Z and (yn)n∈Z,
respectively. Describe (with) proof an algorithm for getting:

(a) a decimal expansion for x+ y,
(b) a decimal expansion for x− y,
(c) a decimal expansion for xy, and
(d) a decimal expansion for x/y (assuming y = 6= 0).

Describe also (with proof) a method for determining if x = y, x > y, or
x < y.

The previous problem hints at a way of constructing the real numbers
rigorously. Indeed, we fix a b and let R the collection of integrally defined
sequences, (xn)n∈Z with 0 ≤ xn ≤ b − 1, which are zero for n sufficiently
small (in the obvious sense) and which do not end with a constant sequence
of b − 1. We define algebraic operations on the set using the algorithms
given in the previous problem with care be taken to avoid an expansion
ending with a constant sequence of b−1. Likewise we define an order on the
collection. Finally we have to verify that all the axioms of R are satisfied.

Showing in this way that R exists is very tedious and certainly long,
but it can be (and has been) done. The ambitious reader is encouraged to
attempt the outlined program. Of course an arbitrary integer b ≥ 2 will
work, but it is perhaps easier to make a specific choice of base (such as
b = 10).





CHAPTER 4

Continuous Functions

The idea of assigning a metric to a set is to have a notion of closeness
between the points. When one considers a function between two metric
spaces then, one is naturally led to ask if the function respects this closeness.
We are led to the notion that we will study in this chapter.

1. Basic Definitions and Characterizations

Definition. Let f : E → G be a function of metric spaces. Suppose p0 ∈ E.
We say that f is continuous at p0 if for every ball BG, centered at f(p0),
there is a ball, BE centered at p0 such that f(BE) ⊂ BG. If A ⊂ E, f is
said to be continuous on A if for all p0 ∈ A, f is continuous at p0. f is called
continuous if f is continuous on E.

Hence, loosely speaking, the function f is continuous at p0 if points near
p0 are taken by f to points close to f(p0).

4.1. Suppose that f : E → G is a function of metric spaces and let p0 ∈ E.
Prove:

(a) f is continuous at p0 if and only if for all ǫ > 0 there exists a δ > 0
so that for all p ∈ E, if dE(p, p0) < δ then dG(f(p), f(p0)) < ǫ.

(b) f is not continuous at p0 if and only if there exists an ǫ > 0 so
that for all δ > 0 there exists pδ ∈ E with dE(pδ, p0) < δ and
dG(f(pδ), f(p0)) ≥ ǫ.

4.2. Let f : R → R be given as below. Prove that f is continuous at p = 2
and p = 5.

(a) f(x) = −6x+ 7
(b) f(x) = x2 + x+ 1

Hint: For (b) with p = 2, let ǫ > 0. We must find δ > 0 so that if |x−2| < δ,
then |f(x) − f(2)| = |x − 2||x + 3| < ǫ. Make sure the eventually choice
of δ is less than 1 so that |x − 2| < δ ≤ 1 implies that x ∈ (1, 3) and thus
|x + 3| < 6. Thus for an appropriate choice of δ, the size of |x + 3| can be
controlled and that of |x− 2| can be made very small.

41
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In general the choice of δ is allowed to depend both on ǫ and on p0. Is
this dependence necessary for the two functions of the previous problem?

4.3. Prove that each of the following functions, f , is continuous.

(a) Let E be any metric space and q ∈ E. Define f : E → R by given
by f(p) = dE(p, q).

(b) Define a function f : E → G between to metric spaces by choosing
a point q0 ∈ G and putting f(p) = q0 for all p ∈ E (such a function
is of course called a constant function).

(c) f = idE where E is any metric space.
(d) Define f : [0,∞) → R by f(x) =

√
x (once again you may assume

that each nonnegative real number has a unique square root).

4.4. Define f : [0, 1] → R by

f(x) =

{

0 if x is irrational

1 if x is rational.

Prove that f is not continuous at any point in [0, 1].

4.5. Let f : [0, 1] → R be given by f(0) = 0 and

f(x) =

{

0 if x is irrational

1/m if x = n
m in lowest terms, n,m nonnegative integers

Prove that:

(a) f is discontinuous at each rational in (0, 1].
(b) f is continuous at each irrational in [0, 1].

When considering continuity, it is very important to take account the
domain of the function. For instance, consider the following example.

4.6. Define a function f : R → R by

f(x) =

{

1 if x ∈ [0, 1]

0 otherwise.

Show that f is not continuous on [0, 1]. However, show that the restriction
of f to [0, 1] is continuous.

The next result is sometimes called the Global Continuity Theorem.

4.7. Let f : E → G be a function of metric spaces. Prove:

(a) f is continuous if and only if for all open sets U ⊂ G, f−1(U) is
open in E.
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(b) f is continuous if and only if for all closed sets F ⊂ G, f−1(F ) is
closed in E.

4.8. Let f : E → G and g : G→ H be functions of metric spaces. Let f be
continuous at p0 ∈ E and let g be continuous at f(p0) ∈ G. Prove that g ◦ f
is continuous at p0.

In a calculus course, continuity is typically defined in terms of limits of
functions and we will give this characterization now.

Definition. Suppose that E and G are metric spaces, A ⊂ E and p0 is a
cluster point of A. Suppose that f : A → G. Let q ∈ G. We say that
limp→p0

f(p) = q if for every open ball BG centered at q there is an open
ball of E BE centered at p0 with f(BE ∩ (A \ {p0})) ⊂ BG.

Note that in the previous definition we do not insist that f is defined
on all of E nor do we insist that is even defined at p0 (only at points ‘close’
to p0). Furthermore if f does happen to be defined at p0, its value there is
irrelevant to its limit at p0.

Notice that our definition is not completely correct because writing an
equality like limp→p0

f(p) = q probably implies the uniqueness of limits of
functions, which we have yet to demonstrate. Fortunately, as we will now
show, limits of functions are unique and so our notation is justified.

4.9. Let E be a subset of a metric space, A ⊂ E and p0 a cluster point of
A. Suppose G is another metric space and let f : A → G. Prove that if
q, q0 ∈ G, limp→p0

f(p) = q, and limp→p0
f(p) = q0 then q = q0.

Thus we are justified in saying the limit and use the notation limp→p0
f(p) =

q0. One might also write “f(p) → q as p → p0.” The following result is a
characterization of continuity that one might see in a calculus course. Of
course in such a course, the text often does not worry about technicalities
like cluster points or isolated points.

4.10. Let f : E → G be a function of metric spaces and let p0 ∈ E. Prove:

(a) If p0 is an isolated point of E then f is automatically continuous at
p0.

(b) If p0 is a cluster point of E then f is continuous at p0 if and only if
limp→p0

f(p) = f(p0).

The next result says that a continuous function is determined by its
values on any dense subset.
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4.11. Suppose that E and G are metric spaces and A is a dense subset of
E. Suppose that f, g : E → G are continuous. Prove that if f(x) = g(x) for
all x ∈ A then f = g.

The next result is called the Sequential Characterization of Continuity.

It is very useful in showing results about continuity of functions because it
allows us to use the results that we have already proven regarding sequences.

4.12. Let f : E → G be a function of metric spaces and let p0 ∈ E. Prove
that f is continuous at p0 if and only if the following condition holds: For
all sequences (pn) ⊂ E such that pn → p0 we have f(pn) → f(p0).

4.13. Let f : E → R and g : E → R. Suppose that f and g are both
continuous at p0 ∈ E. Prove:

(a) f + g and fg are both continuous at p0.

(b) If g(p0) 6= 0 then f
g : E \ {p ∈ E : g(p) = 0} → R is continuous at

p0.

4.14. Which of the above results hold if R is replaced by an arbitrary
normed linear space?

Recall that a function f : R → R is a polynomial function if it has the
form

f(x) = anx
n + · · · + a1x+ a0

for n ∈ Z, n ≥ 0 and ai ∈ R.

4.15. Let p : R → R be a polynomial. Prove that p is continuous.

Definition. Let S be any set and let f : S → En. The component functions

(or coordinate functions) of f are given by

f(x) = (f1(x), f2(x), . . . , fn(x)).

Thus fi : E → R for 1 ≤ i ≤ n.

4.16. Let E be a metric space, let f : E → En, and let p0 ∈ E. Prove that
f is continuous at p0 if and only if for each 1 ≤ i ≤ n, the ith component
function, fi, of f is continuous at p0.

2. Uniform Continuity and Lipschitz Functions

In some circumstances the condition of continuity is actually not a
stronger enough condition to put on a function. In this section we introduce
and study to stronger notions that are often very useful in real analysis.
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Definition. A function f : E → G of metric spaces is uniformly continuous

on E if for all ǫ > 0 there exists δ > 0 so that for all p, q ∈ E if dE(p, q) < δ
then dG(f(p), f(q)) < ǫ.

Note that in the above definition, δ is allowed to depend on ǫ but not
on the point.

4.17. Let f : E → G be a function of metric spaces. Prove:

(a) If f is uniformly continuous on E then f is continuous on E.
(b) f is not uniformly continuous on E if and only if there exists ǫ0 > 0

so that for all δ > 0 there exist pδ, qδ ∈ E with dE(pδ, qδ) < δ and
dG(f(pδ), f(qδ)) ≥ ǫ0.

(c) Let f : R → R be given by f(x) = x2. Then f is not uniformly
continuous.

Definition. A function f : E → G is said to be Lipschitz if there exists
K ∈ R so that for all p, q ∈ E, dG(f(p), f(q)) ≤ KdE(p, q).

4.18. If a function f : E → G of metric spaces Lipschitz then it is uniformly
continuous.

4.19. Let f : [0,∞) → R be given by f(x) =
√
x. Prove that f is uniformly

continuous but not Lipschitz (as usual, you may assume that every positive
real number has a unique positive square root).

4.20. Let f : E → G be a function of metric spaces and suppose that E is
compact. Prove that f is uniformly continuous if and only if it is continuous.

Hint: Let f be continuous. Given ǫ > 0 for x ∈ E choose δx > 0 so that
f(B(x, δx)) ⊂ B(f(x), ǫ

2 ) and then take a finite subcover of {B(x, δx

2 )}x∈E .

Let δ = min δx

2 where the minimum is taken over the finite subcover.

Uniform continuity is incredibly useful when it comes to extending func-
tions. Specifically, we have the following result.

4.21. Let S be a subspace of the metric space E and let f : S → G be
a uniformly continuous function into a complete metric space. Prove that
there exists a unique continuous extension g : S̄ → G of f and that it
is uniformly continuous (to say that g is an extension of f is to say that
g(s) = f(s) for s ∈ S).

The previous result does not hold if we only us continuity.
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4.22. Give an example of a metric space E with a subset S ⊂ E and a
function f : S → G, where G is a complete metric space such that f has no
continuous extension to S̄.

3. Theorems about Continuity

One property of continuous functions is that the inverse image of a closed
set is always itself closed. This is not the case for direct images.

4.23. Give an example of a continuous function f : E → G of metric spaces
and a closed set F ⊂ E such that f(F ) is not closed.

Nevertheless if we require the stronger condition of compactness, the
result we would want does hold.

4.24. Let f : E → G be continuous. Prove that if K ⊂ E is compact then
f(K) is compact.

Hint: Use the Global Continuity Theorem.

A similar result holds for connected spaces.

4.25. Let f : E → G be continuous. Prove that if E is connected then f(E)
is connected.

4.26. Let f : E → G be a continuous bijection. Prove:

(a) If E is compact then f−1 : G→ E is also continuous.
(b) If E is not compact, f−1 need not be continuous.

As usual, these theorems have particularly nice interpretations when
applied to R.

4.27. Let f : [a, b] → R be continuous. Prove that f([a, b]) = [c, d] for some
c ≤ d.

4.28. Let f : [a, b] → R be continuous. Prove:

(a) There exist x0, x1 ∈ [a, b] so that f(x0) ≤ f(x) ≤ f(x1) for all
x ∈ [a, b].

(b) Let x0, x1 ∈ [a, b] and let y ∈ R so that f(x0) < y < f(x1). Then
there exists x ∈ [a, b], lying between x0 and x1 with f(x) = y.

The statement of part (a) above is often called Extreme Value Theo-

rem. Reworded, its conclusion is the f attains a maximum and a minimum
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on [a, b]. Likewise. statement (b) is often called the Intermediate Value

Theorem. They can actually be generalized.

4.29. Suppose that E is a metric space and f : E → R is continuous.

(a) If E is compact then f attains a maximum and a minimum on E.
(b) If E is connected then for each y0, y1 ∈ f(C), and y ∈ R with

y0 < y < y1, there is a p ∈ E with f(p) = y.

As an application of the Intermediate Value Theorem, we may finally
prove the existence of nth roots.

Definition. Suppose that a ∈ R and n ∈ N. We say that a number b is an
nth root of a if bn = a.

4.30. Use the Intermediate Value Theorem to show that every positive real
number has an nth root for all n ∈ N. Show that if n is odd than this root
is unique and that it is positive. Likewise, show that if n is even then there
are two roots exactly one of which is positive.

4.31. Show that if a < 0, a has an nth root if and only if n is odd. Show
this root is unique.

If n ∈ N and a ∈ R, we use the symbols n

√
a and a1/n to denote the

unique positive nth root of a. Likewise we set 01/n = n

√
0 = 0. If m/n ∈ Q

and a ≥ 0, we define am/n = ( n

√
a)m.

4.32. Show that if m/n = p/q then am/n = ap/q. Show that when ex-
ponentiating positive real numbers by rational numbers the usual rules of
exponents apply.

4. Convergence of Functions

Thus far all of our sequences have been sequences of points. In this
section, we modify our perspective a bit to allow for sequences of functions.

Definition. Let E and G be metric spaces and let (fn) be a sequence of
functions, fn : E → G. Let f : E → G be another function. We say that fn

converges to f pointwise on E if for all p ∈ E, fn(p) → f(p). We say that
fn converges to f uniformly on E if for all ǫ > 0 there exists an N ∈ N so
that for all p ∈ E and n ≥ N , dG(fn(p), f(p)) < ǫ.

4.33. Let fn : E → G be a sequence of functions between metric spaces and
let f : E → G. Prove that if fn → f uniformly on E, then fn → f pointwise
on E.
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4.34. Let fn : [0, 1] → R be given by fn(x) = xn for x ∈ [0, 1] and n ∈ N.
Show that fn converges pointwise but not uniformly on [0, 1].

You will notice that the limit function of the previous problem is not
continuous.

4.35. Let fn : E → G be continuous for each n ∈ N. Suppose that fn → f
uniformly on E for some f : E → G. Prove that f is continuous on E.

Definition. Let fn : E → G be a sequence of functions between metric
spaces. (fn) is called uniformly Cauchy if for all ǫ > 0 there exists an
N ∈ N so that for all m,n ≥ N and p ∈ E, we have dG(fn(p), fm(p)) < ǫ.

4.36. Let fn : E → G be a sequence of functions between metric spaces.
Prove:

(a) If fn → f uniformly on E for some f : E → G then (fn) is uniformly
Cauchy on E.

(b) If G is complete and (fn) is uniformly Cauchy then (fn) is uniformly
convergent on E.

In the case that G = R and E is compact, we can actually realize uniform
convergence of functions as convergence of points in a metric space. To be
precise, if E is any compact metric space, we denote the set of continuous
real-valued functions on E by C(E). Notice that there is some conflict of
notation here as C(E) could also denote a set-theoretic complement of E.
The intent of the notation should be clear from the context.

Using Problem 4.13, we see that C(E) is a vector space (since we have
seen that a constant function is continuous). We define a norm on C(E)
by putting ‖f‖ = sup{|f(x)| : x ∈ E} (though from the Extreme Value
Theorem, we see that this supremum is actually a maximum).

4.37. Let E be a compact metric space. Show that C(E) is a normed linear
space.

4.38. Let E be a compact metric space, let (fn) be a sequence of functions
in C(E), and let f ∈ C(E). Show that fn → f uniformly if and only if (fn)
converges to f as points in the metric space C(E).

4.39. Show that C(E) is complete as a metric space.

Of course there are many variations on this idea. We can make some
of the same notions work if we drop the assumption that E is compact and
consider only bounded functions (an assumption that holds automatically
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if E is compact). Likewise we might consider the domain to be a more
general normed linear space and use some of same ideas. Spaces of these
types are prototypical examples of Banach Spaces. Banach Spaces are are
an extremely important class of object in more advanced Real Analysis.





CHAPTER 5

Single Variable Calculus

You probably know that Calculus was first created independently by
Sir Isaac Newton and Gottfried Wilhelm Leibnitz in the 17th Century. It
was major step forward in the study of mathematics and of science. The
applications of the theory are endless.

In this chapter we formulate the basic notions of calculus on R in rigorous
modern language. Calculus of course has two branches: differential calculus
and integral calculus. The Fundamental Theorem of Calculus (which we will
prove) unifies the two branches.

Needless to say the ideas of calculus can also be applied to En to create
a subject often called vector calculus. We will not study vector calculus in
this text.

1. Differentiation

We probably do not need to give motivation or explanation behind the
concept of a derivative. Intuitively, it is a way to measure the way a func-
tion is changing or to measure the instantaneous slope of the graph of the
function.

Definition. Let A ⊂ R, f : A → R and x0 ∈ int(A). We say that f is
differentiable at x0 if

lim
x→x0

f(x) − f(x0)

x− x0

exists. In the case that f is differentiable at x0, we denote the corresponding
limit by f ′(x0). If D ⊂ R, we say that f is differentiable on D if D ⊂ int(A)
and f is differentiable at every point of D.

If f is differentiable on all on its domain than we say that it is a differ-
entiable function. Notice that a necessary condition for this to hold is that
the domain of f must be open.

5.1. Let A ⊂ R, f : A→ R, and x0 ∈ int(A). Prove:

(a) If f is differentiable at x0 then

f ′(x0) = lim
h→0

f(x0 + h) − f(x0)

h
.

51
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(b) f is differentiable at x0 if and only if there exists L ∈ R so that for
all ǫ > 0 there exists δ > 0 such that if |x− x0| < δ then

|f(x) − f(x0) − L(x− x0)| ≤ ǫ|x− x0| .

5.2. Suppose A ⊂ R, f : A→ R, and x0 ∈ A Prove that if f is differentiable
at x0 then f is continuous at x0.

5.3. Let f : R → R be given by f(x) = x2. Show f ′(0) = 0. Let g(x) = −x2.
Show g′(0) = 0. Suppose h : R → R is a function with g(x) ≤ h(x) ≤ f(x)
for all x ∈ R. Show h′(0) = 0.

5.4. Construct a function f : R → R so that f ′(x) exists for all x ∈ R but
f ′(x) is not continuous at x = 0.

Hint: Use the previous problem

.

5.5. Let A be a subset of R, f : A → R and x0 ∈ int(A). Prove that f
is differentiable at x0 if and only if there is a function φ : A → R that is
continuous at x0, such that for x ∈ A,

f(x) = f(x0) + (x− x0)φ(x).

Moreover, prove that if such a φ exists, then f ′(x0) = φ(x0).

The next several problems can be solved using either the definitions
directly or by using the previous problem.

5.6. Let A be a subset of R and suppose that f : A→ R and g : A→ R are
both differentiable at x0 ∈ int(A). Let c ∈ R. Prove:

(a) cf is differentiable at x0 and (cf)′(x0) = cf ′(x0).
(b) f + g is differentiable at x0 and (f + g)′(x0) = f ′(x0) + g′(x0).
(c) fg is differentiable at x0 and (fg)′(x0) = f(x0)g

′(x0)+f ′(x0)g(x0).
(d) If g(x0) 6= 0 then f/g is differentiable at x0 and

(

f

g

)

′

(x0) =
g(x0)f

′(x0) − f(x0)g
′(x0)

[g(x0)]2
.

Hint: For (d), start with the case that f(x) = 1 and then use (c).

Of course part (c) is typically called the Product Rule and part (d) is
called the Quotient Rule.
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5.7. Let p : R → R be given by a polynomial p(x) = a0 + a1x+ · · · + anx
n.

Prove that p is differentiable on R and that p′(x) = a1+2a2x+· · ·+nanx
n−1

for all x ∈ R.

Next we prove the Chain Rule.

5.8. Let A and B be subsets of R. Let f : A → B and g : B → R and
assume that f(A) ⊂ B. Suppose that x0 ∈ int(A) and f(x0) ∈ int(B). If f is
differentiable at x0 and g is differentiable at f(x0), then g◦f is differentiable
at x0 and (g ◦ f)′(x0) = g′(f(x0))f

′(x0).

Hint: Write g(x) = g(f(x0)) + (x − f(x0))ψ(x) for x ∈ B. Replace x by
f(x) for x ∈ A and use f(x) − f(x0) = (x− x0)φ(x).

The next result is of course extremely important in optimizing functions
(and in doing routine calculus problems).

5.9. Suppose that f : [a, b] → R is continuous. Suppose that x0 ∈ (a, b) is
a maximum for f . Then either f is not differentiable at x0 or f(x′0) = 0.
State and prove a corresponding result for minimums.

In other words, any maximum or minimum of f occurs either at an
endpoint or at a “critical point” (that is a point at which the derivative is
zero or does not exist). The next result is an extremely important result in
the theory of differentiation. It is called the Mean Value Theorem.

5.10. Let a < b and let f : [a, b] → R. Assume that f is differentiable on
(a, b) and continuous at a and b. Then there exists a c ∈ (a, b) with

f ′(c) =
f(b) − f(a)

b− a
.

Hint: Prove this by following these steps.

(1) Prove the mean value theorem under the additional assumption
that f(a) = f(b) = 0. To be precise: prove that if f : [a, b] → R

is differentiable on (a, b) and continuous at a and b with f(a) =
f(b) = 0 then there is a c ∈ (a, b) with f ′(c) = 0.

(2) To prove the Mean Value Theorem its full generality, construct a
linear function L which agrees with f(x) at a and b and set g(x) =
f(x) − L(x). Then use (b).

The special case of the Mean Value Theorem where f(a) = f(b) = 0
which we have used to prove the full Mean Value Theorem is call Rolle’s

Theorem.
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5.11. Prove the following corollaries of the Mean Value Theorem:

(a) Let f : (a, b) → R satisfy f ′(x) = 0 for all x ∈ (a, b). Then f is
constant on (a, b).

(b) Let f, g : (a, b) → R be differentiable and satisfy f ′(x) = g′(x) for
all x ∈ (a, b). Then there exists a constant c so that f(x) = g(x)+c
for x ∈ (a, b).

(c) Let f, g : R → R be differentiable with f ′(x) = g′(x) for all x ∈ R.
Then there exists a constant c so that f(x) = g(x)+ c for all x ∈ R.

Definition. Let A ⊂ R and f : A → R. f is increasing if for all x, y ∈ A
with x < y we have f(x) ≤ f(y). f is strictly increasing if for all x, y ∈ A
with x < y we have f(x) < f(y).

Similarly we can define decreasing and strictly decreasing.

5.12. Let f : (a, b) → R and assume that f is differentiable. Prove:

(a) If f ′(x) > 0 for all x ∈ (a, b) then f is strictly increasing on (a, b).
(b) If f ′(x) ≥ 0 for all x ∈ (a, b) then f is increasing on (a, b).
(c) Prove the corresponding results for f ′(x) < 0 and f ′(x) ≤ 0.

5.13. Let f : [a, b] → R be continuous. Assume that f is differentiable and
f ′ is bounded on [a, b]. Prove that f is Lipschitz.

The next result shows that derivative functions satisfy a sort of Inter-
mediate Value Theorem automatically.

5.14. Let A ⊂ R and f : A → R. Assume that [a, b] ⊂ int(A) and that f ′

exists on [a, b]. Let γ lie between f ′(a) and f ′(b). Show that there exists
c ∈ (a, b) with f ′(c) = γ.

Hint: Consider F (x, y) = f(x)−f(y)
x−y on the set {(x, y) : a ≤ x < y ≤ b}. F is

a continuous function on a connected set so its range is an interval.

5.15. Let f be the function of Problem 4.5. Is f differentiable at any point
of [0, 1]?

2. The Riemann Integral

Once again, we all are familiar with the purpose of the integral: its gives
a way to measure the area under the graph of a function on an interval.
The idea behind this is relatively straight forward: we divide the interval
into pieces and make a rectangle out of each piece by using a value of the
function to determine the height. To approximate the area under the graph,
we add up the areas of these rectangles. Using more and more pieces gives
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better and better approximations. Nevertheless, the rigorous formulation is
a bit technical so you should keep the intuitive ideas in mine when reading
the following definition.

Definition. Let a < b. A partition P of [a, b] is an ordered finite set
{a = x0 < x1 < · · · < xn = b}. The norm or width of P is

‖P‖ = max{∆xi : 1 ≤ i ≤ n}
where ∆xi = xi − xi−1. Let f : [a, b] → R. A Riemann sum for f with

respect to P is a number

R =
n

∑

i=1

f(x′i)∆xi

where x′i ∈ [xi−1, xi] for each 1 ≤ i ≤ n. We denote the collection of
Riemann sums of f (with respect to P ) by R(f ;P ). The function f is said
to be Riemann integrable or just integrable on [a, b] if there exists an I ∈ R

such that for all ǫ > 0 there exists a δ > 0 so that if P is any partition of
[a, b] with ‖P‖ < δ then for all R ∈ R(f ;P ), |I −R| < ǫ.

5.16. Show that if I and J both satisfy the definition above for f then
I = J .

Thus I is unique and we call it the Riemann Integral of f on [a, b] (or

just the integral of f on [a, b]). We write I =
∫ b
a f =

∫ b
a f(x)dx.

5.17. Let a < α < β < b and define f : [a, b] → R by

f(x) =

{

c x ∈ [α, β]

0 x /∈ [α, β]

for c ∈ R. Prove that f is integrable on [a, b] and
∫ b
a f = c(β − α).

5.18. Let f : [0, 1] → R be given by

f(x) =

{

1 x rational

0 x irrational

Prove that f is not integrable on [0, 1].

5.19. Let f and g be integrable functions on [a, b]. Let c ∈ R. Prove:

a) f + g is integrable on [a, b] and
∫ b
a (f + g) =

∫ b
a f +

∫ b
a g

b) cf is integrable on [a, b] and
∫ b
a cf = c

∫ b
a f

5.20. Let f and g be integrable on [a, b]. Prove:
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(a) If f ≥ 0 on [a, b] then
∫ b
a f ≥ 0.

(b) If f ≥ g on [a, b] then
∫ b
a f ≥

∫ b
a g.

5.21. Let f be integrable on [a, b].

(a) Let (Pn)∞n=1 be a sequence of partitions of [a, b] with limn→∞ ‖Pn‖ =

0. Let Rn ∈ R(f ;Pn) for n ∈ N. Prove that limn→∞Rn =
∫ b
a f .

(b) Prove

∫ b

a
f = lim

n→∞

n
∑

i=1

f
(

a+ i
b−a

)

(

b−a
n

)

.

5.22. Show that
∫ 1
0 xdx = 1/2 and

∫ 1
0 x

2dx = 1/3, under the assumption

that x and x2 are integrable on [0,1].

5.23. Let f be integrable on [a, b]. Prove that f is bounded on [a, b].

The following result gives a sort of Cauchy criteria for integrability.

5.24. Let f : [a, b] → R. Prove that f is integrable on [a, b] if and only
if for all ǫ > 0 there exists a δ > 0 with the following property: for all
partitions P1 and P2 of [a, b] with ‖P1‖, ‖P2‖ < δ and for all R1 ∈ R(f ;P1),
R2 ∈ R(f ;P2) we have |R1 −R2| < ǫ.

Hint: For the forward implication, let (Pn) be partitions with ‖Pn‖ → 0
and let Rn ∈ R(f ;Pn). Show that (Rn) is Cauchy. Let I = limRn. Prove

that
∫ b
a f = I.

Definition. A step function on [a, b] is a function s : [a, b] → R such that
for some partition P = (x1 < · · · < xn) of [a, b], s is constant on each open
subinterval (xi−1, xi) for 1 ≤ i ≤ n. In other words, there exist ci ∈ R so
that s(x) = ci if xi−1 < x < xi. s(xi) can be either ci or ci+1.

5.25. Let s : [a, b] → R be a step function with s(x) = ci on (xi−1, xi) for
some partition (x0 < · · · < xn) of [a, b]. Prove that s is integrable on [a, b]
and

∫ b

a
s =

n
∑

i=1

ci∆xi.

5.26. Let f : [a, b] → R. Prove that f is integrable on [a, b] if and only
if for all ǫ > 0 there exist step functions s1 and s2 with s1 ≤ f ≤ s2 and
∫ b
a (s2 − s1) < ǫ.
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Hint: For the forward implication, let I =
∫ b
a f and ǫ > 0. Choose δ > 0

so that ‖P‖ < δ implies |R − I| < ǫ/3 for R ∈ R(f ;P ). Fix such a P with
P = (x0 < · · · < xn) and for 1 ≤ i ≤ n, set

mi = inf f [xi−1, xi] and Mi = sup f [xi−1, xi].

Let s1(x) = mi and s2(x) = Mi if x ∈ (xi−1, xi).

For the reverse implication, let s1 ≤ f ≤ s2 with
∫ b
a (s2 − s1) < ǫ/3.

Find δ > 0 so that if ‖P‖ < δ and R ∈ R(si;P ) then |R −
∫ b
a si| < ǫ/3

for i = 1, 2. Fix P = (x0 < · · · < xn) with ‖P‖ < δ. Let R ∈ R(f ;P ),
with R =

∑n
i=1 f(x′i)∆xi. Let Rj =

∑n
i=1 sj(x

′

i)∆xi for j = 1, 2. Show

R ∈ (
∫ b
a s1 − ǫ

3 ,
∫ b
a s2 + ǫ

3).

Definition. Let A ⊂ R. We say that A has measure zero, denoted m(A) =
0, if for all ǫ > 0 there exists a sequence of intervals (In)∞n=1 so that A ⊂
⋃

∞

n=1 In and
∑

∞

i=1m(In) < ǫ (where by m(In) we mean the length of the
interval In; when we say that the infinite sum is less than ǫ, we of course
mean that it converges and that the limit is less than ǫ).

The previous definition is part of a very important branch of real analysis
called measure theory. Intuitively it gives a precise way of measuring the
‘size’ of a set (in terms of length, areas, and volumes rather then cardinality;
we give a discussion on the latter in the appendices). Some sets cannot be
measured, but all reasonable ones can be.

As our language suggests, sets of the type above are exactly those those
which measure to zero. Measure theory also leads to a more robust notion
of the integral, known as the Lebesgue integral. It is more robust in the
sense that any function which is Riemann integrable will also be Lebesgue
integrable (and give the same integral), but some functions are Lebesgue
integrable without being Riemann integrable. Thus Lebesgue integration is
a strictly superior theory of integration.

Returning to our present setting, an observation that might help for the
problems below is that

ǫ

2
+
ǫ

4
+
ǫ

8
+ · · · = ǫ.

Make sure to prove this if you use it.

5.27. Let A ⊂ R. Prove:

(a) A has measure zero if and only if for all ǫ > 0 there exists a sequence
of open intervals (In)∞n=1 with A ⊂ ⋃

∞

n=1 In and
∑

∞

n=1m(In) < ǫ.
(b) A has measure zero if and only if for all ǫ > 0 there exists a sequence

of closed intervals (Jn)∞n=1 with A ⊂
⋃

∞

n=1 Jn and
∑

∞

n=1m(Jn) < ǫ.

5.28. Prove:
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(a) Finite sets have measure zero.
(b) m(Q) = 0.
(c) [0, 1] does not have measure zero.
(d) If A is contained in a set of measure zero than A has measure zero.
(e) Suppose that (An) is a sequence of sets of measure zero. Then

⋃

∞

n=1An also has measure zero.
(f) Countable sets have measure zero (the definition of countable can

be found in the appendices).

5.29. Let f : [a, b] → R and let D(f) be the collection of points at which f
is discontinuous. Prove that f is integrable if and only if f is bounded and
m(D(f)) = 0.

Hint: For the forward implication, first show D(f) =
⋃

∞

n=1D(f, 1
n), where

D(f, 1
n) is the collection of x ∈ [a, b] such that for all δ > 0 there exist

y, z ∈ [a, b] with |y − x| < δ, |z − x| < δ and f(y) − f(z) ≥ 1/n. Show
m(D(f, 1

n0
)) = 0 by using Problem 5.26 for ǫ replaced by ǫ/(2n0): let J =

{1 ≤ i ≤ n : (xi−1, xi) ∩D(f, 1
n0

) 6= ∅} and note that

∑

i∈J

1

n0
∆xi ≤

∫ b

a
(s2 − s1) <

ǫ

2n0
.

For the reverse implication again use Problem 5.26. To produce s1 ≤
f ≤ s2 with

∫ b
a s2 − s1 < ǫ, note that D(f, ǫ

2(b−a) ) is a closed set of measure

zero so it can be covered by finitely many open intervals whose lengths
sum to less than ǫ/(4K) where |f | ≤ K. This defines a partition of [a, b],
Q = (y0 < · · · < ym). Moreover if we sum the lengths ∆yi of those intervals
which have non-empty intersection with D(f, ǫ

2(b−a) ) we get a number less

than ǫ/4K. If [yi−1, yi]∩D(f, ǫ
2(b−a) ) = ∅ then each point in the interval is

the center of an open interval on which f varies less than ǫ/(2(b − a)). So
using compactness we can partition each such interval thusly.

5.30. Let f be the function of 4.5. Prove that f is integrable on [0, 1]. What

is
∫ 1
0 f?

5.31. Let f be integrable on [a, b] and let a < c < b. Prove that the
restrictions f : [a, c] → R and f : [c, b] → R are both integrable and

∫ b

a
f =

∫ c

a
f +

∫ b

c
f.

If f : [a, b] → R is integrable we define
∫ a
b f = −

∫ b
a f . We also define

∫ a
a f = 0 for any function f (defined at a).
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5.32. Let f be integrable on [a, b] and let c, d, e ∈ [a, b]. Prove that
∫ e

c
f =

∫ d

c
f +

∫ e

d
f,

regardless of the order of c, d, and e.

5.33. Let f : [a, b] → R be increasing. Prove that f is integrable on R.

Hint: Show D(f) is countable. Note that if x0 ∈ D(f) then the “right
and left hand limits” exist at x0 but are not equal. Thus there exists a
nonempty open interval Ix0

= (limx→x−

0

f(x), limx→x+

0

f(x)). If x1 ∈ D(f)

with x1 6= x0 then Ix0
∩ Ix1

= ∅.

5.34. Let f : [a, b] → R be integrable. Prove that |f | is integrable.

Hint: How does D(|f |) relate to D(f)?

5.35. Let f and g be integrable on [a, b]. Prove that fg is integrable.

3. The Fundamental Theorem of Calculus

Those of us who were taught calculus in the modern era of mathematics
have trouble appreciating the power and beauty of the Fundamental Theo-
rem of Calculus. Being fairly intuitive, the idea of the integral was around
long before calculus. Certainly mathematicians and scientists found it ad-
vantageous and necessary to know the volumes and areas of certain shapes.
Nevertheless computing the area of any shape which was not extremely sim-
ple proves to be a very difficult task.

For example, even under the assumption that f(x) = x2 is integrable
on the interval [0, 1], our computation of the area under the this segment of
the parabola was necessarily very elaborate. The power of the Fundamen-
tal Theorem of Calculus is the it transforms the computationally difficult
problem of the integral to the computationally simple (at least in certain
situations) problem of an antiderivative. The beauty of the theorem is that
it unifies to seemingly unrelated notions of mathematics. To us the deriva-
tive and the integral have always been intertwined, but in the 17th century
it was quite a remarkable discovery.

5.36. Let f : [a, b] → R be continuous. Define a function F : [a, b] → R by
F (x) =

∫ x
a f .

(a) Prove F is Lipschitz on [a, b]. Moreover if x ∈ (a, b) then F ′(x) =
f(x).

(b) Let G : [a, b] → R be continuous with G′(x) = f(x) if a < x < b.

Prove
∫ b
a f = G(b) −G(a).
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5.37. Let f : [a, b] → [0,∞) be continuous and not identically 0. Prove that
∫ b
a f > 0.

5.38. Let f : [a, b] → R be continuous. Prove that there exists c ∈ [a, b]

with
∫ b
a f = f(c)(b− a).

5.39. Let f : [a, b] → R be continuous, f ≥ 0. Let M = max f [a, b]. Prove

that limn→∞(
∫ b
a f

n)1/n = M .

5.40. Define F : C[a, b] → R by F (f) =
∫ b
a f . Prove that F is uniformly

continuous.



APPENDIX A

Prerequisites

1. Algebra

Though Real Analysis and Algebra are regarded as separate branches
of mathematics, Real Analysis does rely on some of the basic fundamental
constructs of Algebra. Indeed, calculus is the precursor to Real Analysis
and one could not fathom a robust calculus course which avoided the use of
the algebraic properties of numbers. In this section, we will describe briefly
a bit of the more abstract algebraic language. Our primary purpose for
introducing this language is that it will allow us to easily encapsulate many
of the important properties of numbers. The language itself is not necessary
for an understanding of real analysis, but the organization it permits can be
quite convenient.

Definition. If A is a set, an operation on A is a map A×A→ A.

Thus an operation is a rule which takes a pair of elements of A and re-
turns a third element. There is an unlimited number of important examples
of operations in mathematics. For our purposes, however, one should focus
on addition and multiplication within various systems of numbers (like N,
Z, Q, or R). In this vein, we often denote operations using symbols like ‘+’
or ‘·’. In other words, if our operation is ‘+,’ we say the image of (a, b) is
denoted a+ b. If our operation is dnoted by ‘·’, we will often write ab rather
than a · b.

The abstract notion of an operation is far too general to be studied with
any seriousness. Hence we typically place extra conditions on our operations.
We will describe some of them.

Definition. Suppose · is an operation on a set A. We say that · is associative

if for a, b, c ∈ A, we have (a · b) · c = a · (b · c). Likewise, we say the operation
is commutative if a · b = b · a for a, b ∈ A. An element e ∈ A is an identity

for the operation if for each a ∈ A, we have e · a = a · e = a.

A.1. Suppose that A × A → A is an operation. Show that if there is an
identity for this operation then there is only one.
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Since identities are unique, we see that the following definition makes
since.

Definition. Suppose · is an operation on A and suppose that e ∈ A is an
identity. If a ∈ A, we say that b ∈ A is an inverse of a with respect to · if
a · b = b · a = e.

Definition. An abelian group is a set G, together with an associative com-
mutative operation such that G contains an identity and such the every
element has an inverse.

Thus we see that the collection of integers Z is an abelian group under the
operation of addition. The same can be said of the set of rational numbers
Q. What is the identity and the inverses in these cases? Notice that the
collection, Q×, of nonzero rational numbers is also an abelian group under
multiplication. Again what is the identity and the inverses? Why must we
exclude zero?

Unlike Q×, the collection of nonzero integers fails to be a abelian group
under multiplication. Indeed, it satisfies all the requirements except for the
existence of inverses. We thus say it is a commutative monoid. Explicitly,
a commutative monoid is a set together with an associative commutative
operation which has an identity. Thus Q and Z are both commutative
monoids under multiplication.

Of course with numbers, it is important to consider the interaction of
multiplication and addition, rather than just considering the two operations
separately. We are lead to the following definition.

Definition. A field is a set F together with two operations + and ·, called
addition and subtraction respectively, subject to the following conditions:

(a) F is an abelian group under addition,
(b) the collection of nonzero elements of F is an abelian group under

multiplication,
(c) and multiplication distributes over addition, which is to say that for

x, y, z ∈ F , we have x·(y+z) = x·y+x·z and (x+y)·z = x·y+y ·z.

We typically denote the additive identity (that is, the identity with re-
spect to addition) by 0F or just 0 and the multiplicative identity by 1F or
1. The additive inverse of x is denoted by −x and (assuming x 6= 0) the
multiplicative inverse is denoted by 1/x or x−1. We define for xn if n ∈ Z

in the obvious manner.

A.2. If F is a field and x ∈ F , show that 0 · x = x · 0 = 0. Show that
multiplication in F is associative and commutative.



2. ORDERS 63

There are many basic properties of fields that may be derived from the
above field axioms and we will not attempt to give even a partial list here.
It is however, important to realize that any statement you wish to use in
this course must be proven from the axioms. In general, however, it can be
a bit tedious to prove all the ‘obvious’ statements we will be using (such
as (−1)x = −x or ac

bc = a
b ) and so we will allow you to assume these.

Nevertheless, if you have any doubt as to whether a statement is clear, you
should prove it rigorously. If you think that something is ‘obvious’ and yet
you are having difficulty showing it, it is probably something that you need
to prove.

2. Orders

Thus far, we have used defined some important algebraic notions. In
this section we discuss the notion of ordering a set. In addition to allowing
us to formulate more properties of R, the language of orders will lead us to
two very important proof techniques.

Definition. A relation R on a set S is a subset of S × S. The relation R
on S is a partial order if

(a) R is reflexive, meaning (a, a) ∈ R for each a ∈ S;
(b) R is antisymmetric, meaning that for a, b ∈ S, if (a, b) ∈ R and

(b, a) ∈ R then a = b;
(c) and R is transitive, meaning that for a, b, c ∈ S, if (a, b) ∈ R and

(b, c) ∈ R then (a, c) ∈ R.

We usually denote partial orderings by symbols like ≤. In other words,
if (a, b) ∈ R, we write a ≤ b. The related symbols <, >, and ≥ then have
their obvious meanings. If we say (S,≤) is a partially ordered set we mean
that ≤ is a partial ordering on the set S.

A.3. In each case, decide if the relation R on the set S is a partial order.

(a) S = N where (m,n) ∈ R if m divides n.
(b) S = N where (m,n) ∈ R if n divides m.
(c) N where (m,n)R if m is an integer greater than or equal to n
(d) S = Z under (m,n) ∈ R if m− n is a multiple of 17.
(e) S = P(U) under (A,B) ∈ R if A ⊂ B.

We point out that the word ‘partial’ is used to reflect that the fact that,
given two elements a, b ∈ S, we do not necessarily have one of a ≤ b or b ≤ a.
In other words, some pairs of elements may not compare to each other. If
we do have either a ≤ b or b ≤ a, we say that a and b are comparable.

Definition. An order under which each pair of elements is comparable is
called a total order or more simply an order.
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We note that the usual ordering gives a total order on N, Z, and on Q.

Definition. Let (S,≤) be a partially ordered set. If T is a subset, an upper

bound for T is an b ∈ S so that a ≤ b for all a ∈ T . A maximal element of
T is an element b ∈ T so that for a ∈ B, if a ≤ b then a = b. A chain in S
is a subset consisting of elements each pair of which are comparable.

A.4. Let (S,≤) be a partially ordered set and let T be a subset Show by
example that a maximal element of T need not be an upper bound for T .
Show, however, that if S is totally ordered a maximal element of T is an
upper bound for T and T can have at most one maximal element.

A.5. Use your basic knowledge of R to find find all upper bounds in R (if
any) and all maximal elements (if any) for each of the following subsets.

(a) N

(b) (−1, 2)
(c) (−∞, 2]

A.6. Let (S,≤) be given by S = P(N) and A ≤ B if A ⊂ B.

(a) Give an example of an infinite chain C ⊂ S.
(b) Does every subset of S have a maximal element? An upper bound?

The following is an important technique for proofs in many fields of
mathematics.

Zorn’s Lemma: Let (S,≤) be a partially ordered set with S 6= ∅. Assume
every chain in S has an upper bound. Then S has a maximal element.

Zorn’s lemma can be shown to be logically equivalent to the so-called
“axiom of choice” which, roughly speaking, states that given a set of sets, one
can select precisely one element from each set and form a new set. Nearly all
mathematicians consider this axiom to be “ obviously true” and so consider
it a valid assumption in mathematics (there is a slight controversy in that
the axiom of choice leads to strange and counter-intuitive results in certain
exotic settings).

We mentioned that the standard collection of set-theoretic axioms is
called ZFC. We remark here that the ‘C’ stands for ‘choice,’ reflecting the
fact that the axiom of choice is assumed. If you are curious, the ‘Z’ and the
‘F’ stand for Zermelo and Fraenkel, respectively. These two mathematicians
were foundational in formulating some of the basic notions of set theory.

A partially ordered set with the property that every chain has an upper
bound is called inductively ordered. Thus Zorn’s Lemma states that every
inductively ordered set has a maximal element.
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Even if you are not familiar with Zorn’s Lemma, you are probably famil-
iar with the second proof technique of this section: mathematical induction.
In fact this technique is based on a very special property of N.

Definition. An ordered set is called well-ordered if every nonempty set
contains a minimum element.

The quintessential example of a well-ordered set is N and we add this
fact to our list of axioms. Once again, the axioms of set theory allow one to
construct N precisely and then prove that it is well-ordered.

The Theorem of Mathematical Induction: Let P (1), P (2), . . . be a
sequence of statements. Suppose that

1) P (1) is true, and
2) for all n ∈ N if P (n) is true then P (n+ 1) is true.

Then for all n, P (n) is true.

A.7. Prove the Theorem of Mathematical Induction.

A.8. Use mathematical induction to prove that for all n ∈ N

1 + 2 + 3 + · · · + (n− 1) + n =
n(n+ 1)

2

and

12 + 22 + · · · + (n− 1)2 + n2 =
n(n+ 1)(2n + 1)

6
.

A.9. Consider the following statement. Let n ∈ N. In any classroom of n
students if at least one has red hair then all have red hair. Find the error
in the ‘proof’ below.

Proof. Let P (n) be the statement “in any classroom of n students if at
least one has red hair then all have red hair.” Clearly P (1) is true. Assume
P (n) is true. We will prove P (n + 1) is true. To illustrate our argument
in full generality we show P (6) implies P (7). Suppose a classroom has 7
students in it and at least one has red hair. Keep the red head seated and
ask one of the other students to step outside the room. Now we have a
classroom of 6 students and at least one has red hair. Since P (6) is true,
by assumption, all 6 have red hair. Invite the 7th student back in and send
any of the other students outside. Again we have 6 students and at least
one (in fact at least 5) have red hair so all have red hair. Invite the external
student back inside the classroom and gaze upon the 7 red heads. �

Needless to say the above false proof demonstrates how even a seemingly
small error in logic can lead to ridiculous consequences.
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In the following problem, you may assume that every positive real num-
ber has a unique positive square root in R. This is of course the case, but
does not follow from the axioms we have introduce so far. We will prove it
later.

A.10. Let a1 =
√

2 and for n ∈ N, an+1 =
√

2 + an. Show that for all n,
an < 2.

3. Ordered Fields

Thus far we have introduce two types of properties: algebraic properties
and ordering properties. In the case of R, these two type properties interact
favorable in a manner which we now describe.

Definition. Suppose that F is a field and ≤ is an order on F . Then F is
an ordered field with respect to ≤ if

(a) ≤ is preserved by addition, meaning that if x, y, z ∈ F and x ≤ y
then x+ z ≤ y + z and

(b) if x, y ∈ F and x, y ≥ 0, then xy ≥ 0.

If F is an ordered field, we get a notion of positive. That is, we define an
element x to be positive if x > 0. We likewise define negative, nonnegative,
and nonpositive (though the latter term is not used very often).

A.11. Suppose that F is an ordered field and a ∈ F . Show that a2 ≥ 0 and
that a2 = 0 if and only if a = 0. Show also that −1 < 0.

In particular, since −1 is a square in C, the field of complex numbers,
we conclude that there is no order on C which makes it an ordered field.
Nevertheless, there are many examples of ordered fields. It does turn out
to be the case that every ordered field must contain Q (in an appropriate
sense).

4. Vector Spaces

In this section we recall the basic definitions of Linear Algebra.

Definition. Suppose that F is a field. A vector space over F is an abelian
group V equipped with an action F × V → V , called scalar multiplication

and denoted (x, v) 7→ xv such that

(a) x(v1 + v2) = xv1 + xv2 for x ∈ F and v1, v2 ∈ V and
(b) (xy)v = x(yv) for x, y ∈ F and v ∈ V .

Since V is an abelian group, it has an identity element. We typically
call this element the zero vector and denote it with the symbol 0V or 0.
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The basic example of a vector space is Fn. Addition is performed point-
wise, meaning

(x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, . . . xn + yn)

for xi, yi ∈ F and scalar multiplication is defined by x(y1, . . . , yn) = (xy1, . . . , xyn)
for x, yi ∈ F . You should verify for yourself that Fn satisfies all the require-
ments on a vector space.

Definition. Let S be a subset of the F -vector space V . An F -linear com-
bination of S is an expression of the form x1s1 + · · · + xrsr = 0 with si ∈ S
and xi ∈ F . The xi in such a sum are called the coefficients. S is said
to belinearly independent (over F ) if the only way to write zero as a linear
combination of S is to make all the coefficients zero. Likewise, S is said to
span V (over F ) if each element of V may be written as a linear combination
of S. S is called a basis for V (over F ) if it is linearly independent and spans
V .

The following characterization of bases demonstrates their value.

A.12. Show that a subset S of a F -vector space V is basis if and only if
each element v ∈ V may be written uniquely as linear combination of S.

A.13. Suppose V is a vector space over the field F . Suppose that S1 is a
linearly independent set and S2 is set containing S1 which spans V . Show
there is a basis B with S1 ⊂ B ⊂ S2. Show that every vector space contains
a basis.

Hint: This problem can be solved with an application of Zorn’s Lemma.
Find an appropriate ordered set.

A.14. Find a basis for Fn.





APPENDIX B

Supplementary Material and Problems

1. Cardinality

Like many of the great ideas in mathematics, the notion of cardinality is a
way to make an intuitive idea precise. We all know that finite sets carry with
them a notion of ‘size,’ namely the number of ideas in the set. Cardinality is
a way to extend this notion even to infinite sets. We begin by defining what
it means for two sets to have the same ‘size.’ The mathematician Georg
Cantor (who also gave the first rigorous definition of the real numbers) is
one of the fathers of set theory and is widely credited as the creator of
cardinality.

Definition. Let A and B be sets. We shall say that A and B have the
same cardinality, denoted |A| = |B| if there exists a bijection f : A→ B. If
f : A→ B and g : B → C we define g ◦ f : A→ C by g ◦ f(a) = g(f(a)).

B.1. Let A, B and C be sets. Prove:

(a) |A| = |A|
(b) |A| = |B| implies |B| = |A|
(c) |A| = |B| and |B| = |C| implies |A| = |C|

B.2. Use Zorn’s lemma to prove that for all sets A and B either |A| ≤ |B|
or |B| ≤ |A|.

Hint: Let S consist of all ordered triples (C,D, f) where C ⊂ A, D ⊂ B
and f : C → D is 1–1 and onto. We order S by (C,D, f) ≤ (C ′,D′, g) if
C ⊂ C ′, D ⊂ D′ and g extends f . Thus if x ∈ C then g(x) = f(x). Show
that S contains a maximal element.

Definition. A set A is finite if A = ∅ or if there exists n ∈ N so that
|A| = |{1, 2, . . . , n}|. In this last case, we write |A| = n. A is infinite if A is
not finite. A is countably infinite if |A| = |N|. A is countable if A is finite
or countably infinite. A is uncountable if A is infinite but not countably
infinite.

The next result should demonstrate the motivation behind the definition
of having the same cardinality.
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B.3. Let A and B be finite sets. Show that |A| = |B| if and only if A and
B have the same number of elements.

B.4. Let A be a set. Prove that A is countably infinite if and only if we
can write A in the form

A = {a1, a2, . . .} = {an}∞n=1,

where an 6= am if n 6= m.

B.5. Prove that A is countable if and only if A = ∅ or we can write A =
{a1, a2, a3, . . .}. Here the ai’s need not be distinct as in the previous problem.

B.6. Let A and B be sets. Prove

(a) If A ⊂ B and B is countable then A is countable.
(b) If A ⊂ B and A is uncountable then B is uncountable.
(c) If A and B are countable then A×B is countable.
(d) Q is countably infinite.
(e) If I is countable and for all i ∈ I, Ai is countable, then

⋃

i∈I Ai

is countable (we say that a countable union of countable sets is
countable).

(f) [0, 1] is uncountable.
(g) R is uncountable.
(h) R \ Q is uncountable.

If A and B are sets we say that the cardinality of A is less than or equal
to the cardinality of B, denoted “|A| ≤ |B|” if there exists an injection
f : A→ B.

B.7. For all sets A, B, C, prove:

(a) |A| = |B| implies that |A| ≤ |B|.
(b) |A| ≤ |A|.
(c) |A| ≤ |B| and |B| ≤ |C| implies |A| ≤ |C|.
(d) |A| ≤ |B| and |B| ≤ |A| implies that |A| = |B|.

Hint: Part (d) is a bit trickier than one might expect. In fact, even the
Cantor himself gave a flawed proof. By hypothesis there exist injective
functions f : A → B and g : B → A. We must produce a bijection h : A→
B. Let b ∈ B. If there exists a ∈ A with f(a) = b we call a a first ancestor

of b. If there exists c ∈ B with g(c) = a we call c a second ancestor of b (and
a first ancestor of a) and so on. Let

A0 = {a ∈ A : a has an odd number of ancestors}
Ae = {a ∈ A : a has an even number of ancestors}
Ai = {a ∈ A : a has an infinite number of ancestors}.

Similarly we may define B0, Be and Bi. Show that
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A = A0 ∪Ae ∪Ai and
A0 ∩Ae = ∅, A0 ∩Ai = ∅ and
Ae ∩Ai = ∅ (and similarly for B).

In this case we call (Ae, A0, Ai) a partition of A. Show that f maps Ae

bijectively onto B0 and Ai 1–1 onto Bi. Show g maps Be bijectively onto
A0. Then define h : A→ B by h(a) = f(a) if a ∈ Ae ∪Ai and if a ∈ A0 let
h(a) be the first ancestor of A.

Although our language has alluded to it, we have not yet proved that
there exists a set which is not countable. In some sense it is rather counter-
intuitive that this is the case. Essentially we are saying that some infinite
sets are “strictly bigger” than others. One might say that there is more than
one kind of infinity.

B.8. Prove that for all sets A, |P(A)| > |A|.

Hint: First show there exists an injection f : A → P(A). Then show
there does not exist a surjective g : A → P(A) as follows. Suppose for a
contradiction that g is such. Let C = {a ∈ A : a /∈ g(a)}. Suppose g(c) = C.
Is c ∈ C? Is c /∈ C?

Thus, for example, the cardinality of P(N) is strictly larger than that
of N. In particular, P(N) is not countable. The same result demonstrates
even more: given any set, we may find a set with strictly larger cardinality.
A consequence of this fact is there are infinitely-many different cardinalities
(of infinitely-many different types of infinite).

One is naturally led to ask: which infinity describes the number of dif-
ferent infinities? In fact this a very deep question and is essentially unan-
swerable: the collection of all cardinalities is too ‘large’ to be a set itself and
thus we cannot give it a cardinality (if one tries to consider the set of all
cardinalities, one is led inevitable to certain logical paradoxes).

We will show below that |R| = |P(N)|. In practice, mathematicians only
need to deal with certain small cardinalities: finite ones, the cardinality of
N, the cardinality of R, and the cardinality of sets like the set of all functions
from R → R.

B.9. Prove:

(a) |R| = |R2|
(b) |[0, 1]| = |R|
(c) |S| = |[0, 1]| = |(0, 1)| where S is the set of all sequences of 0’s and

1’s.
(d) Let A = {p(x) : p(x) is a polynomial with integer coefficients}.

Then
|A| = |N| .
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Cantor himself was shocked to discover that the cardinality of R was the
the same as that of R2 because he expected that the space R2, which has
larger dimension than R, should be comprise a larger set than did R2. He
famously said “I proved it, but I don’t believe it.”

B.10. Prove that |P(N)| = |R|.

Hint: Use binary decimal expansions to give a bijection between [0, 1] and
the collection of infinite subsets of N. Show that the latter had the same
cardinality as P(N).

For historical reasons, the cardinality of R is called the cardinality of the

continuum. We have shown that the cardinality of the continuum is strictly
larger than the cardinality of N. One is naturally led to wonder if there are
any cardinalities in between. The continumm hypothesis is the statement
that there is this is false: there is no cardinality between that of R and that
of N.

In fact it was demonstrated in the 20th Century that the truth of truth of
the continuum hypothesis is independent of the usual axioms of set theory
(even when when one assumes the axiom of choice). In other words, one
cannot prove that the continuum hypothesis is true and one cannot prove
that the continuum hypothesis is false.

2. Challenge Problems: A Space Filling Curve

In the previous section, we saw that there exists a bijection between
R and R2, a fact that surprise Georg Cantor. Perhaps even stranger is
the result we will show in this section: one can construct a continuous

surjective function f : [0, 1] → [0, 1]2. We typically think of the plane and
the line as two different worlds, but this result shows that the continuous
line segment [0, 1] is “big enough” to fill the square [0, 1]2. Results like this
forced mathematicians to rethink many of the basic notions of dimension.

The following steps guarantee the existence of an onto continuous f :
[0, 1] → [0, 1]2. Let f0 : [0, 1] → [0, 1]2 be the diagonal map. That is, put
f0(t) = (t, t) for t ∈ [0, 1].

Define f1 as follows: divide the square [0, 1]2 into nine equal sub-squares
(like a tic-tac-toe board). Map [0, 1/9] to the ‘northeast’ diagonal

{(t, t) : t ∈ [0, 1/3]}
of the lower-left sub-square in the obvious way, namely linearly in the ‘north-
east’direction: x 7→ (3x, 3x). Likewise map [1/9, 2/9] to the ‘northwest’
diagonal in the left-center subsquare. Map [2/9, 3/9] to the appropriate di-
agonal of the upper-left sub-square. Proceed in this way to the upper-center,
center, lower-center, lower-right, center-right, and upper center sub-squares
(in that order).
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We define f2 by further sub-dividing. Indeed, we divide each of the nine
sub-squares into nine individual pieces and divided each of the intervals
[i/9, (i + 1)/9] into subintervals and map accordingly. We continue this
process obtaining f3, f4, . . .. As an aside, this construction is an example of
a ‘fractal.’

B.11. Show that each fn is continuous and that (fn) is uniformly Cauchy.
Let f be the uniform limit of the fn and show that f : [0, 1] → [0, 1] is
continuous and surjective.

3. Challenge Problems: Convergence of Functions

B.12. Prove or disprove: Let f : R → R be continuous. There exists a
sequence (fn)∞n=1 of functions from R → R so that for all n and all x0 ∈ R,
fn is discontinuous at x0 and fn → f uniformly.

B.13. For n ∈ N let fn(x) = xn(1 − x) for 0 ≤ x ≤ 1. Show that (fn) is
uniformly convergent on [0, 1].

B.14. For n ∈ N define fn : [0, 1]toR by

fn(x) =
nx

1 + nx2
.

Is (fn) uniformly convergent on [0, 1]? Prove or disprove.

4. Challenge Problems: The Cantor Set

The Cantor set is a set with very interesting set-theoretic, measure-
theoretic, and topological properties (which is to say that is very useful for
constructing counter-examples to would be theorems). We will denote it by
∆ and define it as follows.

Let

K0 = [0, 1] ,

K1 =

[

0,
1

3

]

∪
[

2

3
, 1

]

,

K2 =

[

0,
1

9

]

∪
[

2

9
,
1

3

]

∪
[

2

3
,
7

9

]

∪
[

8

9
, 1

]

,

· · ·
In general, Kn is a union of 2n closed sub-intervals of [0, 1] and to get Kn+1

from Kn we remove the middle third of each sub-interval. We define

∆ =

∞
⋂

n=0

Kn .

B.15. Prove:
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(a) ∆ is uncountable so that |∆| = |[0, 1]|
(b) m(∆) = 0
(c) ∆ is compact and int(∆) = ∅.
(d) ∆′ = ∆.
(e) [0, 1] \ ∆ is dense in [0, 1].

From the Cantor set, we can define the Cantor function. It also has
very interesting properties. Define the Cantor function c : [0, 1] \ ∆ → [0, 1]
as follows. On the interval K0 −K1, c is defined to be 1

2 . K1 −K2 is two

subintervals, c is define to be 1
4 on the first and 3

4 on the other. We proceed
in this manner.

B.16. Show that c is uniformly continuous. Thus c has a unique uniformly
continuous extension to [0, 1] which we also denote by c. Show that c :
[0, 1] → [0, 1] is onto and increasing and that c′(x) = 0 for all x /∈ ∆.

5. Challenge Problems: Separability

Definition. A metric space (E, d) is called separable if contains a countable
dense subset.

B.17. Prove:

(a) En is separable for all n ∈ N.
(b) R, when given the discrete metric, is not separable.
(c) C[0, 1] is separable.
(d) Letℓ∞ denote the normed linear space of all bounded sequences

x = (xi)
∞

i=1 of reals under the norm

‖x‖ = sup{|xi| : i ∈ N} .

Show that ℓ∞ is not separable.

B.18. Consider the following statement: if E is a separable metric space
and A ⊂ E then A is separable. Find an error in the following proof.

Proof. Let D ⊂ E with D̄ = E and D countable. Let D0 = A ∩ D.
Then D0 is countable and D̄0 = A. �

B.19. Give a correct proof of the previous statement.

B.20. Let E be a metric space and let A ⊂ E be nonempty. If A is bounded,
we have previously defined the diameter. If A is unbounded, we define its
diameter to be ∞. If A,B ⊂ E are both nonempty we let

d(A,B) = inf{dE(a, b) : a ∈ A, b ∈ B}.
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(a) Prove that if A ⊂ E is compact then there exists x, y ∈ A with
dE(x, y) = diam(A).

(b) Show by example that the conclusion of the previous part need not
be true if A is not compact.

(c) Prove that if A,B ⊂ E are compact and both sets are nonempty
then there exists an a ∈ A and a b ∈ B with d(A,B) = dE(a, b).

(d) Show by example that the conclusion of the previous part need not
be if A is not compact.

B.21. Let fn : [0, 1] → R be continuous for all n ∈ N. Assume that for
all x ∈ [0, 1], the sequence (fn(x))∞n=1 is decreasing and converges to zero.
Show that fn converges uniformly to the zero function.

6. Challenge Problems: The Baire Category Theorem

The next result which seeming very technical nonetheless has many im-
portant consequences. It is called the Baire Category Theorem.

B.22. Let (E, d) be a complete metric space. If E =
⋃

∞

n=1An and each An

is closed then for some n, int(An) 6= ∅.

Hint: Use contradiction. Find a closed ball B1 of radius less than 1 with
B1 ∩ A1 = ∅. Find a closed ball B2 ⊂ B1 of radius less than 1/2 with
B2 ∩A2 = ∅. Proceed in this manner and derive a contradiction.

B.23. Let E be a complete metric space. For n ∈ N, let An ⊂ E be open
and dense. Then

⋂

∞

n=1An is also dense in E.

Hint: Use the Baire Category Theorem.

As we mentioned, the Baire Cateogory Theorem has many consequences.
Here is an interesting one.

B.24. For K ∈ N, let FK be the collection of f ∈ C[0, 1] such that there is
an x0 ∈ [0, 1 − 1/K] with |f(x) − f(x0)| ≤ K(x − x0) for all x0 ≤ x ≤ 1.
Prove:

(a) FK is a closed subset of C[0, 1].
(b) C[0, 1] \ FK is dense in C[0, 1].
(c) Let f ∈ C[0, 1] be differentiable at x0 ∈ (0, 1). Then f ∈ FK for

some K <∞.
(d) There exists a continuous function f : [0, 1] → R which is not

differentiable at a single point.
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In fact, one can construct such a function more directly, but the Baire
category theorem greatly simplifies the proof.

B.25. Let f : R → R be continuous and not bounded. Then there exists
x ∈ R with (f(nx))n∈N unbounded.

Hint: Let AK = {x ∈ [0, 1] : |f(nx)| ≤ K for all n ∈ N}.

7. Challenge Problems: Miscellaneous

B.26. Let K be a compact metric space and let K ⊃ K1 ⊃ K2 ⊃ · · · where
each Ki is nonempty and closed. Let G be an open set with

⋂

∞

n=1Kn ⊂ G.
Then there exists n with Kn ⊂ G.

Definition. Let E be a metric space. A set A ⊂ E is called path connected

if for each a, b ∈ A there is a map f : [0, 1] → A with f(0) = a and f(1) = b.

B.27. Let G ⊂ En be open and connected. Prove that G is path connected.

Definition. A function f : E → G of metric spaces is called an isometry if
for all p, q ∈ E we have

dG(f(p), f(q)) = dE(p, q).

In other words an isometry is a function which preserves distances (whereas
a continuous function only preserves closeness).

B.28. Let E be a compact metric space and let T : E → E be an isometry.
Show that T is surjective. Show by example that this is not necessarily true
if E is not compact.

B.29. Let T : [a, b] → [a, b] be continuous. Let a ≤ x1 < x2 < x3 < x4 ≤ b
with Tx1 = x2, Tx2 = x3,Tx3 = x4 and Tx4 ≤ x1. Show that there exists
an x ∈ [a, b] with T ◦ T ◦ T (x) = x but T ◦ T (x) 6= x.


