Martingale Problem and Boltzmann equation: Difference between pages

From nonlocal pde
(Difference between pages)
Jump to navigation Jump to search
imported>Nestor
(Created page with "{{stub}} (Classical Martingale Problem) Given a (local) linear operator $\mathcal{L}: C^2(\mathbb{R}^n) \to C(\mathbb{R}^n)$ Martingale Problem for $\mathcal{L}$ consists in fin...")
 
imported>Nestor
No edit summary
 
Line 1: Line 1:
{{stub}}
{{stub}}


(Classical Martingale Problem) Given a (local) linear operator $\mathcal{L}: C^2(\mathbb{R}^n) \to C(\mathbb{R}^n)$ Martingale Problem for $\mathcal{L}$ consists in finding for each $x_0 \in \mathbb{R}^d$ a probability measure $\mathbb{P}^{x_0}$ over the space of all continuous functions $X: [0,+\infty) \to \mathbb{R}^d$ such that
The Boltzmann equation is an evolution equation used to describe the configuration of particles in a gas, but only statistically. Specifically, if the probability that a particle in the gas lies in some region $A$ of phase space $\mathbb{R}^d\times \mathbb{R}^d$ at time $t$ is given by


\begin{equation*}
\begin{equation*}
\mathbb{P}^{x_0}\left ( X(0)=x_0 \right ) = 1
\int_A f(x,v,t)dxdy
\end{equation*}
\end{equation*}


and whenever $f \in C^2(\mathbb{R}^2)$ we have that
then $f(x,v,t)$ solves the non-local equation


\begin{equation*}
\begin{equation*}
f(X(t))-f(X(0))-\int_0^t \mathcal{L} f(X(s)) \;ds
\partial_t f + v \cdot \nabla_x f = Q(f,f)
\end{equation*}
\end{equation*}


is a [[Martingale| Local Martingale]] under $\mathbb{P}^{x_0}$
where $Q(f,f)$ is the Boltzmann collision operator, given by
 
\begin{equation*}
Q(f,f)(v) = \int_{\mathbb{R}^d}\int_{\mathbb{S}^{d-1}} B(v-v_*,e) (f(v')f(v'_*)-f(v)f(v_*) d\sigma(e) dv_*
\end{equation*}
 
here $d\sigma$ denotes the Hausdorff measure on $\mathbb{S}^{d-1}$, and given $v,v_* \in \mathbb{R}^d$ and $e \in \mathbb{S}^{d-1}$ we write
 
\begin{align*}
v'  & = v-(v-v_*,e)e\\
v'_* & = v_*+(v-v_*,e)e
\end{align*}
 
and $B$, which is known as the Boltzmann collision kernel, measures the strength of collisions in different directions.
 
 
== Conservation laws ==
 
 
== The Landau Equation ==
 
For Coulumb interactions, the corresponding collision kernel $B$ always diverges, instead in this case, one uses an equation (which is an asymptotic limit of Boltzmann equation) first derived by Landau,
 
\begin{equation*}
f_t + x\cdot \nabla_y f = Q_{L}(f,f)
\end{equation*}
 
where now $Q_{L}(f,f)$ denotes the Landau collision operator, which can be written as
 
\begin{equation*}
Q_{L}(f,f) = \text{Tr}(A[f]D^2f)+f^2
\end{equation*}
 
where $A[f]$ is the matrix valued operator given by convolution with the matrix kernel $K(y)= (8\pi|y|)^{-1}\left ( I -\hat y\otimes \hat y)\right )$, $\hat y = y/|y|$. In particular, any solution to the Landau equation which stays bounded and vanishes fasts enough at infinity will be solving a second-order parabolic equation with H\"older continuous coefficients.

Revision as of 12:04, 21 November 2012

This article is a stub. You can help this nonlocal wiki by expanding it.

The Boltzmann equation is an evolution equation used to describe the configuration of particles in a gas, but only statistically. Specifically, if the probability that a particle in the gas lies in some region $A$ of phase space $\mathbb{R}^d\times \mathbb{R}^d$ at time $t$ is given by

\begin{equation*} \int_A f(x,v,t)dxdy \end{equation*}

then $f(x,v,t)$ solves the non-local equation

\begin{equation*} \partial_t f + v \cdot \nabla_x f = Q(f,f) \end{equation*}

where $Q(f,f)$ is the Boltzmann collision operator, given by

\begin{equation*} Q(f,f)(v) = \int_{\mathbb{R}^d}\int_{\mathbb{S}^{d-1}} B(v-v_*,e) (f(v')f(v'_*)-f(v)f(v_*) d\sigma(e) dv_* \end{equation*}

here $d\sigma$ denotes the Hausdorff measure on $\mathbb{S}^{d-1}$, and given $v,v_* \in \mathbb{R}^d$ and $e \in \mathbb{S}^{d-1}$ we write

\begin{align*} v' & = v-(v-v_*,e)e\\ v'_* & = v_*+(v-v_*,e)e \end{align*}

and $B$, which is known as the Boltzmann collision kernel, measures the strength of collisions in different directions.


Conservation laws

The Landau Equation

For Coulumb interactions, the corresponding collision kernel $B$ always diverges, instead in this case, one uses an equation (which is an asymptotic limit of Boltzmann equation) first derived by Landau,

\begin{equation*} f_t + x\cdot \nabla_y f = Q_{L}(f,f) \end{equation*}

where now $Q_{L}(f,f)$ denotes the Landau collision operator, which can be written as

\begin{equation*} Q_{L}(f,f) = \text{Tr}(A[f]D^2f)+f^2 \end{equation*}

where $A[f]$ is the matrix valued operator given by convolution with the matrix kernel $K(y)= (8\pi|y|)^{-1}\left ( I -\hat y\otimes \hat y)\right )$, $\hat y = y/|y|$. In particular, any solution to the Landau equation which stays bounded and vanishes fasts enough at infinity will be solving a second-order parabolic equation with H\"older continuous coefficients.