Iterative improvement of oscillation

From nonlocal pde
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

This is a generic technique which is used to show that solutions to some equations are Holder continuous. The technique consist in proving iteratively that the oscillation of the function in a ball of radius $r$ (for elliptic equations) or a parabolic cylinder (for parabolic equations) has a certain decay as $r \to 0$ and then obtain a Holder continuity result from it.

Main scaling assumption

In order for the technique to work, we need to start with a solution to a scale invariant equation or class of equations. That is, we have a function $u : B_1 \to \R$ such that, the scaled functions \[ u_r(x) = \lambda u(rx),\] satisfy some convenient equation for all $r<1$ and $\lambda>0$. The equation can depend on $r$, as long as the assumptions on it do not deteriorate as $r \to 0$.

What we need to prove

Main lemma

The main step is to prove that there exists a radius $\rho>0$ and $\delta>0$ so that for any solution $u$ such that $\textrm{osc}_{B_1} u \leq 1$ then $\textrm{osc}_{B_\rho} u \leq 1-\delta$.

Alternatively, for parabolic equations, we would have to prove that if \[ \textrm{osc}_{B_1 \times [-1,0]} u \leq 1 \ \text{ then } \ \textrm{osc}_{B_\rho \times [-\rho^2,0]} u \leq 1-\delta.\]

How it works

Iterating a scaled version of the main lemma mentioned above, we get that for all integers $k>0$, \[ \textrm{osc}_{B_{\rho^k}} u \leq (1-\delta)^k.\] This implies that $u$ is $C^\alpha$ at the origin for $\alpha = \log(1-\delta)/\log(\rho)$.