Category:Quasilinear equations and Operator monotone function: Difference between pages

From nonlocal pde
(Difference between pages)
Jump to navigation Jump to search
imported>Nestor
No edit summary
 
imported>Mateusz
(Created page with "A function $f : [0, \infty) \to [0, \infty)$ is said to be an operator monotone function (complete Bernstein function, Nevanlinna-Pick function for the half-line) if $A \ge B \ge...")
 
Line 1: Line 1:
A quasilinear equation is one that is linear in all but the terms involving the highest order derivatives (whether they are of fractional order or not). For instance, the following equations are all quasilinear (and not semilinear)
A function $f : [0, \infty) \to [0, \infty)$ is said to be an operator monotone function (complete Bernstein function, Nevanlinna-Pick function for the half-line) if $A \ge B \ge 0$ implies $f(A) \ge f(B) \ge 0$ for any self-adjoint matrices $A$, $B$. Many equivalent definitions can be given.<ref name="SSV"/>


\[ \mbox{div} \left ( \frac{\nabla u}{\sqrt{1+|\nabla u|^2}}\right ) = 0 \] Mean curvature equation
==Representation==
\[ u_t = \mbox{div} \left ( u^p \nabla u\right ) \]
A function $f$ is operator monotone if and only if
\[ u_t+(-\Delta)^{s} u +H(x,t,u,\nabla u)=0\;\; (2s>1) \]
\[ f(z) = a z + b + \int_{(0, \infty)} \frac{z}{z + r} \, \frac{\rho(\mathrm d r)}{r} \]
for some $a, b \ge 0$ and a Radon measure $\rho$ such that $\int_{(0, \infty)} \min(r^{-1}, r^{-2}) \rho(\mathrm d r) < \infty$.


Equations which are not quasilinear are called [[Fully nonlinear]]. Note that all [[Semilinear equations]] are automatically quasilinear.
==Relation to Bernstein functions==
Operator monotone functions form a subclass of [[Bernstein function]]s. Namely, a Bernstein function $f$ is an operator monotone function if and only if the measure $\mu$ in the Bernstein representation of $f$:
\[ f(z) = a z + b + \int_{(0, \infty)} (1 - e^{-t z}) \mu(\mathrm d t) \]
has a completely monotone density function. In this case
\[ \mu(\mathrm d t) = \left( \int_{(0, \infty)} e^{-t r} \rho(\mathrm d r) \right) \mathrm d t \]
This explains the name complete Bernstein functions.
 
==Holomorphic extension==
Every operator monotone function $f$ extends to a holomorphic function on $\C \setminus (-\infty, 0]$ such that
\begin{align*}
\Im f(z) & \ge 0 \qquad && \text{if } \Im z \ge 0 , \\
f(z) & \ge 0 \qquad && \text{if } \Im z = 0 , \\
\Im f(z) & \le 0 \qquad && \text{if } \Im z \le 0 .
\end{align*}
Conversely, any function $f$ with above properties is an operator monotone function.
 
Functions with nonnegative imaginary part in the upper half-plane are often called Nevanlinna-Pick functions, or Pick functions.
 
==Operator monotone functions of the Laplacian==
Operator monotone functions of the Laplacian are particularly regular examples of translation invariant non-local operators in $\R^n$. More precisely, $A = f(-\Delta)$ for an operator monotone $f$ if and only if
\[ -A u(x) = a \Delta u(x) + b u(x) + \int_{\R^n} (u(x + y) - u(x) - z \cdot \nabla u(x) \mathbf{1}_{|z| < 1}) k(z) \mathrm d z \]
for some $a, b \ge 0$ and $k(z)$ of the form
\begin{align*}
k(z) &= \int_0^\infty \int_0^\infty (4 \pi t)^{-n/2} e^{-|z|^2 / (4 t)} e^{-t r} \mathrm d t \rho(\mathrm d r)
\end{align*}
 
==References==
{{reflist|refs=
<ref name="SSV">{{Citation | last1=Schilling | first1=R. | last2=Song | first2=R. | last3=Vondraček | first3=Z. | title=Bernstein functions. Theory and Applications | year=2010 | publisher=de Gruyter, Berlin | series=Studies in Mathematics | volume=37 | url=http://dx.doi.org/10.1515/9783110215311 | doi=10.1515/9783110215311}}</ref>
}}
 
{{stub}}

Revision as of 03:34, 19 July 2012

A function $f : [0, \infty) \to [0, \infty)$ is said to be an operator monotone function (complete Bernstein function, Nevanlinna-Pick function for the half-line) if $A \ge B \ge 0$ implies $f(A) \ge f(B) \ge 0$ for any self-adjoint matrices $A$, $B$. Many equivalent definitions can be given.[1]

Representation

A function $f$ is operator monotone if and only if \[ f(z) = a z + b + \int_{(0, \infty)} \frac{z}{z + r} \, \frac{\rho(\mathrm d r)}{r} \] for some $a, b \ge 0$ and a Radon measure $\rho$ such that $\int_{(0, \infty)} \min(r^{-1}, r^{-2}) \rho(\mathrm d r) < \infty$.

Relation to Bernstein functions

Operator monotone functions form a subclass of Bernstein functions. Namely, a Bernstein function $f$ is an operator monotone function if and only if the measure $\mu$ in the Bernstein representation of $f$: \[ f(z) = a z + b + \int_{(0, \infty)} (1 - e^{-t z}) \mu(\mathrm d t) \] has a completely monotone density function. In this case \[ \mu(\mathrm d t) = \left( \int_{(0, \infty)} e^{-t r} \rho(\mathrm d r) \right) \mathrm d t \] This explains the name complete Bernstein functions.

Holomorphic extension

Every operator monotone function $f$ extends to a holomorphic function on $\C \setminus (-\infty, 0]$ such that \begin{align*} \Im f(z) & \ge 0 \qquad && \text{if } \Im z \ge 0 , \\ f(z) & \ge 0 \qquad && \text{if } \Im z = 0 , \\ \Im f(z) & \le 0 \qquad && \text{if } \Im z \le 0 . \end{align*} Conversely, any function $f$ with above properties is an operator monotone function.

Functions with nonnegative imaginary part in the upper half-plane are often called Nevanlinna-Pick functions, or Pick functions.

Operator monotone functions of the Laplacian

Operator monotone functions of the Laplacian are particularly regular examples of translation invariant non-local operators in $\R^n$. More precisely, $A = f(-\Delta)$ for an operator monotone $f$ if and only if \[ -A u(x) = a \Delta u(x) + b u(x) + \int_{\R^n} (u(x + y) - u(x) - z \cdot \nabla u(x) \mathbf{1}_{|z| < 1}) k(z) \mathrm d z \] for some $a, b \ge 0$ and $k(z)$ of the form \begin{align*} k(z) &= \int_0^\infty \int_0^\infty (4 \pi t)^{-n/2} e^{-|z|^2 / (4 t)} e^{-t r} \mathrm d t \rho(\mathrm d r) \end{align*}

References

  1. Schilling, R.; Song, R.; Vondraček, Z. (2010), Bernstein functions. Theory and Applications, Studies in Mathematics, 37, de Gruyter, Berlin, doi:10.1515/9783110215311, http://dx.doi.org/10.1515/9783110215311 

This article is a stub. You can help this nonlocal wiki by expanding it.

Pages in category "Quasilinear equations"

The following 2 pages are in this category, out of 2 total.