D. R. Yafaev
Passage through a potential barrier and multiple wells
(464K, .pdf)
ABSTRACT. Consider the semiclassical limit, as the Planck constant $\hbar
i 0$, of bound states of a one-dimensional quantum particle in multiple potential wells separated by barriers. We show that, for each eigenvalue of the Schr\"odinger operator, the Bohr-Sommerfeld quantization condition is satisfied at least for one potential well. The proof of this result relies on a study of real wave functions in a neighborhood of
a potential barrier. We show that, at least from one side, the barrier fixes the phase of wave functions in the same way as a potential barrier of infinite width. On the other hand, it turns out that for each well there exists an eigenvalue in a small neighborhood of every point satisfying the Bohr-Sommerfeld condition.