Pavel Exner and Takashi Ichinose
Note on a Product Formula Related to Quantum Zeno Dynamics
(272K, pdf)
ABSTRACT. Given a nonnegative self-adjoint operator $H$ acting on a separable Hilbert space and an orthogonal projection $P$ such that $H_P := (H^{1/2}P)^*(H^{1/2}P)$ is densely defined, we prove that $\lim_{n
ightarrow \infty} (P\,\mathrm{e}^{-itH/n}P)^n = \mathrm{e}^{-itH_P}P$ holds in the strong operator topology. We also derive modifications of this product formula and its extension to the situation when $P$ is replaced by a strongly continuous projection-valued function satisfying $P(0)=P$.