
An asynchronous leap-frog method

Ulrich Mutze ∗

A second order explicit one-step numerical method for the initial value
problem of the general ordinary differential equation is proposed. It is ob-
tained by natural modifications of the well-known leap-frog method, which
is a second order, two-step explicit method. According to the latter method,
the input data for an integration step are two system states which refer to
different times (we employ the terminology of dynamical systems). The us-
age of two states instead of a single one can be seen as the reason for the
robustness of the method. Since the time step size thus is part of the step
input data, it is complicated to change this size during the computation of a
discrete trajectory. This is a serious drawback when one needs to implement
automatic time step control.

The proposed modification transforms one of the two input states into
a velocity and thus gets rid of the time step dependency in the step input
data. For these new step input data, the leap-frog method gives a unique
prescription how to evolve them stepwise.

The method is exemplified with the equation of motion of a one-
dimensional non-linear oscillator describing the radial motion in the Kepler
problem. For this equation the modified leap-frog method is shown to be
significantly more accurate than the original method.

As a result, we have a second order explicit method that, just as the simple
explicit Euler method, needs only one evaluation of the right-hand side of
the differential equation per integration step, and allows to change the time
step without any additional computational burden after each integration
step. Unlike the Euler method and the explicit Runge-Kutta methods it is
robust in the sense that it allows us to reliably model the dynamics of a wide
variety of physical systems over extended periods of time.

1 Introduction

We consider the initial value problem of the general ordinary differential equation
�
ψ(t) = F(t, ψ(t)) (1)

∗www.ulrichmutze.de

1

2

for a time-dependent quantity ψ which takes values in a real finite-dimensional vector
space H . Here F is a function R×H → H 1 . Equations of this kind arise from ordinary
differential equations of finite order and from discrete approximations to partial differ-
ential equations like the time-dependent Schrödinger equation or Maxwell’s equations.
The main example here will be H = R2

F : R×R2 → R2

(t,(x,v)) 7→
(

v,
1
x2

(
1
x
−1

)) (2)

which describes the radial motion in the Kepler problem. This is a convenient test prob-
lem since its initial value problem can be solved directly without making use of time
stepping by solving Kepler’s famous transcendental equation. Since it is equivalent
to a Hamiltonian problem, there are many integration methods available (e.g. [6]) to
compare with. More demanding applications of the method, in which H is a higher-
dimensional space, are considered in [12] and presented in [13].

The computational initial value problem associated with this equation (1) asks for an al-
gorithm which determines for each R-valued increasing list t0, t1, . . . , tn and each value
ψ0 ∈ H (the initial value) a H -valued list ψ1, . . . ,ψn such that the R×H -valued list
(t0,ψ0),(t1,ψ1), . . . ,(tn,ψn) is a reasonable approximation to a solution curve t 7→ ψ(t),
ψ(t0) = ψ0, of the differential equation (1) whenever the regularity properties of F suf-
fice for determining such a curve, and the gaps between adjacent t−values are small
enough. If such an algorithm works only for equidistant time lists (for which ti− ti−1 is
independent of i by definition) it is said to be synchronous and otherwise it is said to be
asynchronous. Asynchronous algorithms may be developed into adaptive ones, which
adjust their step size ti+1 − ti to the size (according to a suitable notion of size in H)
of F(ti, ψi). For a R-valued function F that depends on its second argument trivially,
the initial value problem is simply the problem of computing the definite integral. It is
straightforward and instructive to specialize the proposed algorithms to this simplified
concrete situation.

Starting from the well-known leap-frog algorithm, the present article develops and
analyzes an economic and robust asynchronous solution of the computational initial
value problem associated with (1). Section 2 recalls the leap-frog method, and Section 3
carries out the general development of the new asynchronous algorithm. Section 4 will
apply this integration method and related methods to the differential equation defined
by (2).

1 As is well-known, one may increase formal simplicity by transforming away the explicit t-dependence
of the right-hand side of this equation, thus rendering it autonomous. However, I refrain from assuming
autonomy, since the algorithms to be considered should apply to time-dependent real-world problems
directly, without a need to transform them into autonomous ones.

3

2 The leap-frog method

A marvelously simple synchronous solution algorithm for the computational initial
value problem of (1) is the leap-frog method or explicit midpoint rule, see e.g. [7], eq.
(3.3.11). It seems to be the first method that has been successfully applied to the initial
value problem of the time-dependent Schrödinger equation (see [2] and the citation of
this work in [3]). It is most conveniently considered as the map

L : (R×H)× (R×H) → (R×H)× (R×H)
((t0,ψ0),(t1,ψ1)) 7→ ((t1,ψ1),(t2,ψ2)) ,

(3)

where

t2 := 2t1− t0 ,

ψ2 := ψ0 +(t2− t0)F(t1, ψ1) .
(4)

The equivalent form

t0 + t2
2

= t1 ,

ψ2−ψ0

t2− t0
= F(t1, ψ1)

(5)

of these equations, together with equation (1), makes the reasons for choosing them
evident:

F(t1, ψ(t1)) =
�
ψ(t1) =

ψ(t2)−ψ(t0)
t2− t0

+O((t2− t0)3) . (6)

Iterating the map L determines a leap-frog trajectory, ((t j,ψ j)) j∈N if (t0,ψ0) and (t1,ψ1)
are given:

(ti+1,ψi+1) = π2(L((ti−1,ψi−1),(ti,ψi))) = π2(L i((t0,ψ0),(t1,ψ1))) , (7)

where π2 is the canonical projection to the second component of a pair. According to
the initial value problem we are given t0, t1 (which determines, due to the assumed
synchronicity, all further t-values) and ψ0. For starting iteration (7) we need also ψ1.
This has to be added in a way consistent with (1), e. g. by employing the explicit Euler
rule

ψ1 := ψ0 +(t1− t0)F(t0, ψ0) (8)

or a more accurate method (with the same order of error as (6)) such as the implicit
trapezoidal rule, which gives the iterative limit definition

ψ
(i+1)
1 := ψ0 +(t1− t0)

F(t0, ψ0)+F(t1, ψ
(i)
1)

2
(9)

for ψ1 starting with ψ
(0)
1 := ψ0, for which (8) is the result of the first iteration step.

4

We have here an interesting situation: Even for arbitrary ψ1, the iteration (7) can be
used to define a leap-frog trajectory. This then is typically a zig-zag line which tends to
wiggle around a trajectory of differential equation (1) and initial data (t0,ψ0). The closer
ψ1 is set to this trajectory (e.g. by (8) or, better, (9)) the lower the zig-zag amplitude
will be. The map (3), considered as a discrete dynamical system, is thus related to the
continuous dynamical system associated with (1) in a more sophisticated manner than
usual: The state space of the discrete system is (R×H)× (R×H) since only this set
allows the leap-frog method to be defined as a map of states into states. Only a subset
of this state space (e. g. the one given by (8)) corresponds to potential initial states of
the continuous system (1).

Equation (7) defines ψi for arbitrarily large i, whereas equation (1) may drive a tra-
jectory in finite time into infinity. In such cases the size of the numbers involved in
applying mapping L repeatedly will grow above the size which can be handled with
realistic computational resources (which include computation time). Such exploding
situations also occur if the time step size is too large for the differential equation under
consideration.

It might be instructive to discuss the close correspondence of this algorithm to the
leap-frog game (Bockspringen in German). In the variant which is of interest here,
there are two participants A and B in this nice dynamical sportive exercise. There is an
intended direction of motion and the participants line up in this direction, B standing
a few meters in front of A. This is the initial condition, which corresponds in the algo-
rithm to the ordered input ((t0,ψ0)∼= A,(t1,ψ1)∼= B). After two or three energetic steps,
A jumps over B, supporting himself with both palms on the shoulders of B, thereby
receiving from B a smooth kick which makes A fly to a position sufficiently far in front
of B that now the action can continue with the roles of A and B reversed, then reversed
again, and so forth. The kick which A receives from B corresponds to adding the term
(t2 − t0)F(t1, ψ1) (associated with B) to the term ψ0, which is associated with A. The
result of this addition is ψ2, which corresponds again to A, but at a new position. By
continuation we create terms ψ3,ψ4 All terms with even index correspond to A,
and those with odd index to B. The index grows with the progress along the intended
direction of motion.

The algorithm can easily be shown to be reversible: Let the operator of motion reversal
be defined as

T : (R×H)× (R×H) → (R×H)× (R×H)
((t0,ψ0),(t1,ψ1)) 7→ ((t1,ψ1),(t0,ψ0))

(10)

then we easily verify
L ◦T ◦L = T , T ◦T = 1 (11)

from which one concludes that L is invertible, with the inverse given by T ◦L ◦ T .
This allows us to reconstruct from the last two data ((tn−1,ψn−1),(tn,ψn)) of a leap-frog
trajectory all previous components (tk,ψk), k < n−1,

(tk,ψk) = π2(T Ln−kT ((tn−1,ψn−1),(tn,ψn))) . (12)

5

The dynamical system defined by (1) needs not to be reversible. Then, executing (12)
may involve numbers which transcend the limitations of real-word computations.

If we would like to change time step size after having arrived at some state
((tp−1,ψp−1), (tp,ψp) to value τ, we may start a new synchronous trajectory with the
state

((tp,ψp), (tp + τ,ψp + τF(tp,ψp)) (13)

or a more accurate form which also involves ψp−1 (which equation (13) simply forgets).

3 An asynchronous version of the leap-frog method

What I intend here, is to modify the leap-frog method in a way that no tradeoffs be-
tween simplicity and accuracy are involved when we start a trajectory or when we
change the time step size. A further aim is to preserve the computational simplicity of
the algorithm. In a narrower framework than (1) this modified leap-frog method has
been introduced in [12] and applied to time-dependent Hartree equations in [13].

We consider four consecutive components of a leap-frog trajectory of (1)

(tk, ψk) , (tk+1, ψk+1) , (tk+2, ψk+2) , (tk+3, ψk+3) (14)

and let τ be the time step. Then we define velocity-like quantities φ as follows:

φk :=
ψk+1−ψk

τ
, φk+1 := F(tk+1, ψk+1) , φk+2 :=

ψk+2−ψk+1

τ
. (15)

From this definition and from (5) we obtain

φk +φk+2

2
=

ψk+2−ψk

2τ
= F(tk+1, ψk+1) = φk+1 . (16)

These equations allow us to compute (tk+2, ψk+2, φk+2) if (tk, ψk, φk) and τ are given:

tk+1 = tk + τ , ψk+1 = ψk + τφk , φk+1 = F(tk+1, ψk+1) ,

tk+2 = tk+1 + τ ,

ψk+2 = ψk +2τφk+1 ,

φk+2 =
ψk+2−ψk+1

τ
.

(17)

Equation (16) allows us to give the last two equations of (17) a more symmetrical form:

φk+2 = 2φk+1−φk ,

ψk+2 = ψk+1 + τφk+2 .
(18)

The association (tk, ψk, φk) 7→ (tk+2, ψk+2, φk+2) can now be considered a mapping
R×H ×H → R×H ×H which depends on the total time step 2τ and thus will be
denoted A2τ. The data (tk+1, ψk+1, φk+1) are intermediary (or temporary) with respect to
this mapping. This mapping may be iterated: Let us apply A2τ to (tk+2, ψk+2, φk+2). The

6

result may be denoted (tk+4, χk+4, κk+4) and the intermediary data as (tk+3, χk+3, κk+3).
Although the formulas which define A2τ are all consequences of the leap-frog law, the
iteration of A2τ does not exactly continue the leap-frog trajectory. Actually, we have
χk+3 = ψk+3 only up to terms of order τ2:

ψk+3 = ψk+1 +2τF(tk+2, ψk+2) ,

χk+3 = ψk+2 + τφk+2 = 2ψk+2−ψk+1 = ψk+1 +2(ψk+2−ψk+1)
(19)

and thus

(ψk+3−χk+3)/2 = τF(tk+2, ψk+2)+ψk+1−ψk+2 = O(τ2) . (20)

The reason for this behavior lies in the fact that in going from the normal leap-frog
algorithm to the asynchronous one we change the notion of system state. The new
state notion is more conventional in so far as it refers to a single point in time, whereas
the normal leap-frog state consists of data that refer to two points in time. If we are
given, according to the initial value problem of (1), the initial values t0 and ψ0, the
augmentation to a full state according to the new state notion is straightforward and
does not depend on the next time value t1. It is simply given by:

φ0 := F(t0, ψ0) . (21)

From (t0,ψ0,φ0) and a list (t1, t2, . . .) we generate a discrete trajectory

((t0,ψ0,φ0),(t1,ψ1,φ1),(t2,ψ2,φ2), . . .)

by the iteration of mappings A2τ defined earlier

(ti+1,ψi+1,φi+1) := Ahi(ti,ψi,φi) , hi := ti+1− ti . (22)

For convenience, let us rewrite the definition of A in fully explicit terms: For each h ∈R
the mapping

Ah : R×H ×H → R×H ×H
(t,ψ,φ) 7→ (t,ψ,φ)

(23)

can be seen from (17) and (18) to be defined by the following chain of formulas:

τ :=
h
2

,

t ′ := t + τ ,

ψ
′ := ψ+ τφ ,

φ
′ := F(t ′, ψ

′) ,

φ := 2φ
′−φ ,

ψ := ψ
′+ τφ = ψ+2τφ

′ ,

t := t ′+ τ ,

(24)

7

where the leap-frog midpoint state data t ′,φ′,ψ′ appear only as intermediary quantities
that help to give the algorithm an elegant form. This corresponds to equation (8) in [12]
but is more general since it does not assume the special form of F that was considered
there.

Obviously A0 is the identity map and A is reversible in the sense that for all h ∈ R we
have — by a non-trivial cancellation of terms — the equation

A−h ◦Ah = A0 (25)

which implies that each of the maps Ah is invertible, as is the product of arbitrarily
many such mappings. As mentioned already for the corresponding situation of the nor-
mal leap-frog method, this invertibility of all discrete evolution maps does not imply
that the dynamical system defined by (1) has invertible evolution maps. The reversion
of discrete trajectories is discussed in [12] subsequent to equation (10). It is to be noted
that there is no motion reversion operator comparable to (10). One may be tempted
to try T : (t,ψ,φ) 7→ (−t,ψ,−φ), but this fails to satisfy Ah ◦T ◦Ah = T which would
correspond to (11).

For a given state (t,ψ,φ), which determines a discrete trajectory by successive ap-
plication of Ah, one may also define a normal leap-frog trajectory starting from the
leap-frog state (t− τ,ψ− τφ),(t,ψ), τ := h

2 , by successive application of L . Therefore, in
a sense, the role of φ is to memorize information from the foregoing integration step
in addition to state data ψ. Also multi-step methods and predictor-corrector methods
improve computational economy by memorizing results from antecedent integration
steps. But they do so directly, by memorizing a list of previous states, each associ-
ated with the time of its validity. Letting information from antecedent integration steps
propagate in the form of derived quantities, such as our φ-data, is the clue of the present
method.

To consider the usage of such derived quantities is most directly motivated by the
desire to obtain an asynchronous method, as the matter is presented here. Actually, my
motivation was a different one, namely to extend the well-behaved integrator (32) for
differential equations (31) of second order to the more general situation (1). The close
relation of the arising method to the leap-frog method became apparent only later.

4 The Kepler oscillator as a test example

Computing the motion of a point mass in the gravitation field of a stationary point
mass is what the Kepler problem is about. The radial motion in elliptic Kepler orbits (as
opposed to parabolic and hyperbolic ones) is oscillatory and can be viewed as the mo-
tion of a one-dimensional oscillator which deserves interest as a mechanical example
system. Unlike other non-linear example oscillators such as the Duffing oscillator and
the Van der Pol oscillator this system seems to be anonymous. The self-suggesting name
Kepler oscillator can be found in [11] for this system and will be used in the present arti-
cle. In the literature this name is, however, more often used for the harmonic oscillator

8

which is related to the Kepler problem by a regularizing transformation, known as the
KS transformation.

As is well known (e.g. [1], equation (3-14)) the radial Kepler motion is governed by
the differential equation

m
��
r =− ∂

∂r

(
−GMm

r
+

L2

2mr2

)
(26)

in which L is the constant angular momentum of mass m relative to the position of the
space-fixed mass M. Of course, r is the distance between these two masses and G is
the constant of gravity. Restricting ourselves to orbits with non-vanishing L and by
selecting suitable units of time, mass, and length, we get for the quantities m, GM, and
L the common numerical value 1. Writing x for the numerical value of r and v for the
numerical value of

�
r we get

�
x = v ,

�
v =− ∂

∂x

(
−1

x
+

1
2x2

)
=

1
x2

(
1
x
−1

)
(27)

which is the differential equation determined by (2) and also is (since, due to m = 1, v is
the momentum) the system of canonical equations associated with the Hamiltonian

H(v,x) := T (v)+V (x) :=
1
2

v2 +
1
x

(
1
2x
−1

)
. (28)

This quantity is known to be constant on each orbit. Since, as Figure 1 shows, V attains
an absolute minimum at x = 1: V (1) =−1

2 we have H(v,x)≥ H(0,1) =−1
2 . We consider

only states for which H(v,x) < 0 and thus x > 1
2 . These correspond to the elliptical orbits

in the Kepler problem; for them the radial motion has an oscillatory character. Kepler’s
ingenious method for computing the system path for given initial state (not simply the
orbit, a subject to which surprisingly many physics texts restrict their interest) can be
formulated as a simple algorithm: Given (t0,x0,v0) such that H0 := H(v0,x0) < 0 and t1
we have to go through the following chain of formulas (see also [8], Section 4):

a :=− 1
2H0

(major semi-axis)

ε :=

√
1− 1

a
(numerical eccentricity)

n := a−
3
2 (mean motion)

z := 1− x0

a
+ i

x0v0√
a

E0 := argz (eccentric anomaly)
M0 := E0− εsinE0 (mean anomaly)
M1 := M0 +(t1− t0)n
E1 := solution of E1 = M1 + εsinE1 (Kepler’s equation)
x1 := a(1− εcosE1)

v1 :=
εa2nsinE1

x1

(29)

9

to get the exactly evolved state (t1,x1,v1). Here the solution E of M + εsinE is
given by the algorithm (C++ syntax, R is the type for representing real numbers, i.e.
typedef double R;)
R solKepEqu(R M, R eps, R acc)
// M: mean anomaly, eps: numerical eccentricity, acc: accuracy e.g. 1e-8
{

R xOld=M+1000, xNew=M;
while (abs(xOld-xNew) > acc){

xOld=xNew;
R x1=M+eps*sin(xNew);
R x2=M+eps*sin(x1);
xNew=(x1+x2)*0.5; // My standard provision against oscillations.

// Works extremely well
}
return xNew;

}

The computational burden for (29) is independent of the time span t1− t0, and it does
not matter whether this span is positive (prediction) or negative (retro-diction). Hence,
there is no relevant distinction between solution (29) and what normally is referred to
as a closed form solution. So, in assessing the accuracy of numerical integrators, we have
the exact solution always available. In addition to the original leap-frog method and
the new asynchronous leap-frog method, we consider two established second order
methods for further comparison: The traditional second order Runge-Kutta method (e.g.
[5], (16.1.2)) and the more modern symplectic position Verlet integrator, [4], equation
(2.22). For this method there are several names in use, cf. [12], above equation (13),
and [10]. The present article refers to it as the direct midpoint integrator and recalls its
definition for the present simple situation that the forces don’t depend on the velocity.
Equation (27) can be viewed as a single differential equation of second order

��
x =

1
x2

(
1
x
−1

)
(30)

and for convenience of comparison with (24) we write this equation in a form similar
to (1) as

��
ψ(t) = F(t, ψ(t)) ,

�
ψ(t) =: φ(t) . (31)

Since the differential equation is second order, the initial values for ψ and φ have to
come from the problem and the integrator, just as in (24), has the task to promote them
both. This is done by formulas very similar to (24):

τ :=
h
2

,

t ′ := t + τ ,

ψ
′ := ψ+ τφ ,

φ := φ+hF(t ′, ψ
′) ,

ψ := ψ
′+ τφ ,

t := t ′+ τ .

(32)

10

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

V
(x

)

x

-1/x + 1/(2*x*x)

Figure 1: Potential function of the Kepler oscillator

If one accepts to have one equation more than necessary, one may take (24) as it stands,
and replace the defining equation for φ′ by the definition φ′ := φ+ τF(t ′, ψ′).

The orbits of the system can be uniquely parametrized by the values 0≤ ε < 1 of the
numerical eccentricity, which is related to the total energy H0 through ε2 = 1−2H0 (see
(29)). The x-values along an orbit range between the solutions xmin,xmax of V (x) = H0
and the v-values range between the solutions vmin,vmax of T (v)− 1

2 = H0.
Most graphs to be presented here refer to a single path: The one which as an orbit is

characterized by ε = 0.15, and the initial state of which is the ‘perihelion’ i.e. v0 = 0 and
that x0 = xmin. The oscillation of this path tuns out to be tP = 6.501. Further we easily find
vmax = −vmin = 0.157 and xmin = 0.870, xmax = 1.176 which agrees with the location of
the oval shape in Figure 2. As time step for stepwise integration we use h = tP/32 to the
effect that 32 computed steps cover the whole period and thus would lead back to the
initial position if there would be no integration errors. Each computation yields a dis-
crete trajectory of 512 steps, which corresponds to 16 full ’revolutions’. Figure 2 shows
that for these data the Runge-Kutta method does not create a periodic orbit and that
the orbit in phase space spirals into the outer space. At this graphical resolution, orbits
created by the other methods are hard to distinguish. Figure 2 represents the deviation
of the computed position from the exact one for the four methods under consideration.
What is displayed here is not simply the difference in phase space location but the phase
space position that occurs if the state at time t is back-evolved via the exact dynamics to
the initial time t = 0. If the stepwise integration would not introduce an error, the point
to be displayed would come out as (0,0) in all cases. The errors express themselves as
curves (paths) with parameter t and a longer curve indicates a larger total error after
the whole integration. Although the dependence on the curve parameter t is not shown

11

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25

v

x

second order Runge-Kutta method
direct midpoint integrator

asynchronous leap-frog method
leap-frog method

Figure 2: Computed orbits in phase space

in the curves (only the orbit is represented), the 16 approximately repeated substruc-
tures in these curves show how the error evolves from revolution to revolution. The
coordinates in these diagrams are indexed ‘relative’ which means that x-differences are
divided by xmax− xmin and v-differences are divided by vmax− vmin. As already pointed
out in [9], near equation (92), these curves can be interpreted as paths in an interaction
picture dynamics, which again is a dynamical system. This kind of interaction picture
(Dirac picture) considers the stepwise integration as the combined action of the exact
evolution and a ‘discretization interaction’ (in analogy to considering a digitized signal
as a superposition of the original analog signal and ’digitization noise’). The more accu-
rate the stepwise integration method, the weaker is the interaction and the slower is the
motion seen in the interaction picture. As mentioned in [9], this diagnostics based on
the interaction picture is not restricted to systems for which the exact solution is directly
accessible; an access through stepwise back-evolution methods is sufficient if these are,
say, two orders of magnitude more accurate than the method under investigation.

This interaction picture dynamics is related to the usage of evolution operators
e iHt e− iH0t in quantum mechanical scattering theory and with backward error analysis
in numerical analysis of differential equations, [6], Chapter 10 and [10], Section 4.

Since, as already clear from Figure 2, the error of the Runge-Kutta method is much
larger than the error of the other methods, the following Figure 4 gives the correspond-
ing representation for the more accurate methods only. This figure suggests that the
direct midpoint integrator is by far more accurate than the two leap-frog integrators.
We will see now that this suggestion is misleading. In the application considered in
[13] it was found that the asynchronous leap-frog integrator showed similar step size
requirements as the direct midpoint integrator when a actual leap-frog step was defined

12

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

-0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

dv
_r

el

dx_rel

second order Runge-Kutta method
direct midpoint integrator

asynchronous leap-frog method
leap-frog method

Figure 3: Integration error of four computational methods in the ’interaction picture’

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

-0.05 0 0.05 0.1 0.15 0.2 0.25

dv
_r

el

dx_rel

direct midpoint integrator
asynchronous leap-frog method

leap-frog method

Figure 4: Integration error of the better methods in the ’interaction picture’

13

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

-0.004 -0.002 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014

dv
_r

el

dx_rel

direct midpoint integrator
densified asynchronous leap-frog integrator

densified leap-frog integrator

Figure 5: Integration error of the direct midpoint method together with the densified
leap-frog methods in the ’interaction picture’ for ε = 0.15. Sixteen periods at
32 steps per period.

as consisting of two leap-frog steps of half the step size. Also in the present context it
makes sense to consider such a subdivision of a step. We thus define the densified leap-
frog integrators as

L̃ := L ◦L
Ãh := Ah/2 ◦Ah/2

(33)

and display the resulting error orbits in Figure 5. Note that again there are 32 inte-
gration steps per orbit, but these are made from substeps so that only every second
computed step results in a graphical point. For such a combined step, the computa-
tional burden is the same as for one second order Runge-Kutta step, but the accuracy
is much better than for Runge-Kutta. It is plausible that only this densified version of
the leap-frog methods turns out to come close to the accuracy of the direct midpoint
method: The latter has direct access to the second derivative of the solution, whereas
the leap-frog methods only accesses the first derivative and thus can be viewed as sim-
ulating access to the second derivative by evaluating the first derivative at two different
points. One may generate corresponding diagrams for different values of eccentricity
and step size and will experience a surprising morphological stability of the curves and
their relative length. Figure 6 is an example for this. Here, the number of points per
revolution is increased to 64 in response to the increased value of the eccentricity ε.

It is rather evident from all such graphs is that the asynchronous leap-frog method
has shorter and more regular error orbits than the standard leap-frog method.

References 14

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

-0.002 -0.001 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007

dv
_r

el

dx_rel

direct midpoint integrator
densified asynchronous leap-frog integrator

densified leap-frog integrator

Figure 6: Integration error of the direct midpoint method together with the densified
leap-frog methods in the ’interaction picture’ for ε = 0.30. Sixteen periods at
64 steps per period.

Acknowledgment

I am grateful to Domenico Castrigiano for many discussions on the relation of discrete
mathematics to classical analysis and to Ernst Hairer for a valuable comment.

References

[1] Herbert Goldstein: Klassische Mechanik, Akademische Verlagsgesellschaft, 1963

[2] A. Askar and S. Cakmak, J. Chem. Phys. 68, 2794 (1978)

[3] H. Tal-Ezer and R. Kosloff: An accurate and efficient scheme for propagating the
time dependent Schrödinger equation, J. Chem. Phys. 81 (9) 3967-3971 (1984)

[4] M. Tuckerman, B.J. Berne, G.J. Martyna: Reversible multiple time scale dynamics,
J. Chem. Phys. Vol. 97(3) pp. 1990 - 2001, 1992, Equation (2.22)

[5] William H. Press, Saul A. Teukolsky, William T. Vetterling, Brian P. Flannery: Nu-
merical Recipes in C, The Art of Scientific Computing, Second Edition, Cambridge
University Press 1992

[6] J.M. Sanz-Serna and M.P. Calvo: Numerical Hamiltonian Problems, Applied
Mathematics and Mathematical Computation 7, Chapman & Hall 1994

References 15

[7] A.M. Stuart and A.R. Humphries: Dynamical Systems and Numerical Analysis,
Cambridge University Press, 1996

[8] Ulrich Mutze: Predicting Classical Motion Directly from the Action Principle II
Mathematical Physics Preprint Archive 1999–271
www.ma.utexas.edu/mp arc/c/99/99-271.pdf

[9] Ulrich Mutze: A Simple Variational Integrator for General Holonomic Mechanical
Systems, Mathematical Physics Preprint Archive 2003–491
www.ma.utexas.edu/mp arc/c/03/03-491.pdf

[10] Ernst Hairer, Christian Lubich, Gerhard Wanner: Geometric numerical integration
illustrated by the Störmer/Verlet method, Acta Numerica (2003) pp. 1-51 Cam-
bridge University Press, 2003

[11] G. Gallavotti: Classical Mechanics
http://ipparco.roma1.infn.it/pagine/deposito/2005/MC.ps.gz

[12] Ulrich Mutze: The direct midpoint method as a quantum mechanical integrator II,
Mathematical Physics Preprint Archive 2007–176
www.ma.utexas.edu/mp arc/c/07/07-176.pdf

[13] Ulrich Mutze: Separated quantum dynamics Mathematical Physics Preprint
Archive 2008–69
www.ma.utexas.edu/mp arc/c/08/08-69.pdf

Last modification: 2008-10-19

	Introduction
	The leap-frog method
	An asynchronous version of the leap-frog method
	The Kepler oscillator as a test example

